Abstract
In this paper, we present a parallelized finite element code developed to study wave propagation phenomena, specifically in porous soils problems which usually require millions of degrees of freedom. The parallelization technique uses an algebraic grid partitioning managed by a Single Program Multiple Data (SPMD) programming model. Message Passing Interface (MPI) library specification is the standard used to exchange data between processors. The architecture of the code is explained and numerical results show its performance.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I- Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)
Coussy, O.: Mécanique des milieux poreux. Paris: Ed. Technip. (1991)
Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech 8, 71–96 (1984)
Simon, B.R., Wu, J.S.S., Zienkiewicz, O.C., Paul, D.K.: Evaluation of u-w and u-π finite element methods for the dynamic response of saturated porous media using one-dimensional models. Int. J. Numer. Anal. Methods Geomech 10, 461–482 (1986)
Gajo, A., Saetta, A., Vitaliani, R.: Evaluation of three and two field finite element methods for the dynamic response of saturated soil. Int. J. Numer. Anal. Methods Geomech 37, 1231–1247 (1994)
Papadrakakis, M., Bitzarakis, S.: Domain decomposition PCG methods for serial and parallel processing. Adv. Eng. Softw. 25, 291–307 (1996)
Lirkov, I.: MPI solver for 3D elasticity problems. Math. Comput. Simul. 61, 509–516 (2003)
Bohlen, T.: Parallel 3-D viscoelastic finite difference seismic modelling. Comput. Geosci. 28, 887–899 (2002)
Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Simulation of transient mechanical wave propagation in heterogeneous soils. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 647–654. Springer, Heidelberg (2005)
Terada, K., Ito, T., Kikuchi, N.: Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Comput. Methods Appl. Mech. Eng. 153, 223–257 (1998)
Coussy, O., Dormieux, L., Detournay, E.: From Mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35, 4619–4635 (1998)
Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Transient mechanical wave propagation in semi-infinite porous media using a finite element approach. Soil Dyn. Earthq. Eng. 25, 421–430 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A., Fougère, D. (2006). Numerical Modelling of Poroviscoelastic Grounds in the Time Domain Using a Parallel Approach. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758525_7
Download citation
DOI: https://doi.org/10.1007/11758525_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34381-3
Online ISBN: 978-3-540-34382-0
eBook Packages: Computer ScienceComputer Science (R0)