ウェーバーの火炎速度数(ウェーバーのかえんそくどすう)とは、流体力学で用いられる無次元数の1つ。以下の公式で求められる[1]。
W e = S u S u H 2 {\displaystyle We={\frac {Su}{Su_{H_{2}}}}}
ただし、 W e {\displaystyle We} はウェーバーの火炎速度数、 S u {\displaystyle Su} は着目する物質の火炎速度、 S u H 2 {\displaystyle Su_{H_{2}}} は水素の火炎速度である。水素は最も火炎速度の大きい物質であるため、ウェーバーの火炎速度数は必ず1以下になる。
アーセル数 - 圧力係数 - アトウッド数 - アルキメデス数 - イリバレン数 - ウェーバー数 - ウェーバーの火炎速度数 - ウォーリスパラメータ - ウオマスリー数 - エクマン数 - エッカート数 - エトベス数 - エリクセン数 - オイラー数 - オーネゾルゲ数 - 拡散数 - ガリレイ数 - カルロビッツ数 - 管摩擦係数 - キャビテーション数 - キャピラリ数 - クーラン数 - クーリガン・カーペンター数 - クタテラッゼ数 - クヌーセン数 - グラスホフ数 - グレーツ数 - 形状係数 - ゲルトラー数 - コルバーンのJ因子 - シャーウッド数 - シュミット数 - スタントン数 - スチュアート数 - ストークス数 - ストローハル数 - ゼルドビッチ数 - ダンケラー数 - チャンドラセカール数 - ディーン数 - テイラー数 - デボラ数 - ヌセルト数 - ハーゲン数 - ハルトマン数 - ビオ数 - ビンガム数 - フーリエ数 - ブラウネル・カッツ数 - プラントル数 - ブリンクマン数 - フルード数 - ブレーク数 - ペクレ数 - ベジャン数 - マークシュタイン数 - マッハ数 - マランゴニ数 - モートン数 - ラプラス数 - ランキスト数 - リチャードソン数 - ルイス数 - レイノルズ数 - レイリー数 - ロスビー数 - ロックハート・マルティネリパラメータ - ロッシュコ数 - ワイゼンベルグ数
この項目は、物理学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:物理学/Portal:物理学)。