iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://github.com/gmalivenko/gluon2pytorch
GitHub - gmalivenko/gluon2pytorch: Gluon to PyTorch deep neural network model converter
Skip to content

gmalivenko/gluon2pytorch

Repository files navigation

gluon2pytorch

Build Status GitHub License Python Version Readthedocs

Gluon to PyTorch model convertor with script generation.

Installation

git clone https://github.com/gmalivenko/gluon2pytorch
cd gluon2pytorch
pip install -e . 

or you can use pip:

pip install gluon2pytorch

How to use

It's the convertor of Gluon graph to a Pytorch model file + weights.

Firstly, we need to load (or create) Gluon Hybrid model:


class ReLUTest(mx.gluon.nn.HybridSequential):
    def __init__(self):
        super(ReLUTest, self).__init__()
        from mxnet.gluon import nn
        with self.name_scope():
            self.conv1 = nn.Conv2D(3, 32)
            self.relu = nn.Activation('relu')

    def hybrid_forward(self, F, x):
        x = F.relu(self.relu(self.conv1(x)))
        return x


if __name__ == '__main__':
    net = ReLUTest()
    
    # Make sure it's hybrid and initialized
    net.hybridize()
    net.collect_params().initialize()

The next step - call the converter:

    pytorch_model = gluon2pytorch(net, [(1, 3, 224, 224)], dst_dir=None, pytorch_module_name='ReLUTest')

Finally, we can check the difference

    import torch
    input_np = np.random.uniform(-1, 1, (1, 3, 224, 224))

    gluon_output = net(mx.nd.array(input_np))
    pytorch_model.eval()
    pytorch_output = pytorch_model(torch.FloatTensor(input_np))
    check_error(gluon_output, pytorch_output)

Supported layers

Layers:

  • Linear
  • Conv2d
  • ConvTranspose2d (Deconvolution)
  • MaxPool2d
  • AvgPool2d
  • Global average pooling (as special case of AdaptiveAvgPool2d)
  • BatchNorm2d*
  • Padding2d (constant, reflection, replication)

Reshape:

  • Flatten

Activations:

  • ReLU
  • LeakyReLU
  • Sigmoid
  • Softmax
  • SELU

Element-wise:

  • Addition
  • Concatenation
  • Subtraction
  • Multiplication

Misc:

  • clamp
  • BilinearResize2D
  • LRN

Classification models converted with gluon2pytorch

Model Top1 Top5 Params FLOPs Source weights Remarks
ResNet-10 37.09 15.55 5,418,792 892.62M osmr's repo Success
ResNet-12 35.86 14.46 5,492,776 1,124.23M osmr's repo Success
ResNet-14 32.85 12.41 5,788,200 1,355.64M osmr's repo Success
ResNet-16 30.68 11.10 6,968,872 1,586.95M osmr's repo Success
ResNet-18 x0.25 49.16 24.45 831,096 136.64M osmr's repo Success
ResNet-18 x0.5 36.54 14.96 3,055,880 485.22M osmr's repo Success
ResNet-18 x0.75 33.25 12.54 6,675,352 1,045.75M osmr's repo Success
ResNet-18 29.13 9.94 11,689,512 1,818.21M osmr's repo Success
ResNet-34 25.34 7.92 21,797,672 3,669.16M osmr's repo Success
ResNet-50 23.50 6.87 25,557,032 3,868.96M osmr's repo Success
ResNet-50b 22.92 6.44 25,557,032 4,100.70M osmr's repo Success
ResNet-101 21.66 5.99 44,549,160 7,586.30M osmr's repo Success
ResNet-101b 21.18 5.60 44,549,160 7,818.04M osmr's repo Success
ResNet-152 21.01 5.61 60,192,808 11,304.85M osmr's repo Success
ResNet-152b 20.54 5.37 60,192,808 11,536.58M osmr's repo Success
PreResNet-18 28.72 9.88 11,687,848 1,818.41M osmr's repo Success
PreResNet-34 25.88 8.11 21,796,008 3,669.36M osmr's repo Success
PreResNet-50 23.39 6.68 25,549,480 3,869.16M osmr's repo Success
PreResNet-50b 23.16 6.64 25,549,480 4,100.90M osmr's repo Success
PreResNet-101 21.45 5.75 44,541,608 7,586.50M osmr's repo Success
PreResNet-101b 21.73 5.88 44,541,608 7,818.24M osmr's repo Success
PreResNet-152 20.70 5.32 60,185,256 11,305.05M osmr's repo Success
PreResNet-152b 21.00 5.75 60,185,256 11,536.78M Gluon Model Zoo Success
PreResNet-200b 21.10 5.64 64,666,280 15,040.27M tornadomeet/ResNet Success
ResNeXt-101 (32x4d) 21.32 5.79 44,177,704 7,991.62M Cadene's repo Success
ResNeXt-101 (64x4d) 20.60 5.41 83,455,272 15,491.88M Cadene's repo Success
SE-ResNet-50 22.51 6.44 28,088,024 3,877.01M Cadene's repo Success
SE-ResNet-101 21.92 5.89 49,326,872 7,600.01M Cadene's repo Success
SE-ResNet-152 21.48 5.77 66,821,848 11,324.62M Cadene's repo Success
SE-ResNeXt-50 (32x4d) 21.06 5.58 27,559,896 4,253.33M Cadene's repo Success
SE-ResNeXt-101 (32x4d) 19.99 5.00 48,955,416 8,005.33M Cadene's repo Success
SENet-154 18.84 4.65 115,088,984 20,742.40M Cadene's repo Success
DenseNet-121 25.11 7.80 7,978,856 2,852.39M Gluon Model Zoo Success
DenseNet-161 22.40 6.18 28,681,000 7,761.25M Gluon Model Zoo Success
DenseNet-169 23.89 6.89 14,149,480 3,381.48M Gluon Model Zoo Success
DenseNet-201 22.71 6.36 20,013,928 4,318.75M Gluon Model Zoo Success
DPN-68 23.57 7.00 12,611,602 2,338.71M Cadene's repo Success
DPN-98 20.23 5.28 61,570,728 11,702.80M Cadene's repo Success
DPN-131 20.03 5.22 79,254,504 16,056.22M Cadene's repo Success
DarkNet Tiny 40.31 17.46 1,042,104 496.34M osmr's repo Success
DarkNet Ref 38.00 16.68 7,319,416 365.55M osmr's repo Success
SqueezeNet v1.0 40.97 18.96 1,248,424 828.30M osmr's repo Success
SqueezeNet v1.1 39.09 17.39 1,235,496 354.88M osmr's repo Success
SqueezeResNet v1.1 39.83 17.84 1,235,496 354.88M osmr's repo Success
ShuffleNetV2 x0.5 40.61 18.30 1,366,792 42.34M osmr's repo Success
ShuffleNetV2c x0.5 39.87 18.11 1,366,792 42.37M tensorpack/tensorpack Success
ShuffleNetV2 x1.0 33.76 13.22 2,278,604 147.92M osmr's repo Success
ShuffleNetV2c x1.0 30.74 11.38 2,279,760 148.85M tensorpack/tensorpack Success
ShuffleNetV2 x1.5 32.38 12.37 4,406,098 318.61M osmr's repo Success
ShuffleNetV2 x2.0 32.04 12.10 7,601,686 593.66M osmr's repo Success
108-MENet-8x1 (g=3) 43.62 20.30 654,516 40.64M osmr's repo Success
128-MENet-8x1 (g=4) 45.80 21.93 750,796 43.58M clavichord93/MENet Success
228-MENet-12x1 (g=3) 35.03 13.99 1,806,568 148.93M clavichord93/MENet Success
256-MENet-12x1 (g=4) 34.49 13.90 1,888,240 146.11M clavichord93/MENet Success
348-MENet-12x1 (g=3) 31.17 11.41 3,368,128 306.31M clavichord93/MENet Success
352-MENet-12x1 (g=8) 34.70 13.75 2,272,872 151.03M clavichord93/MENet Success
456-MENet-24x1 (g=3) 29.57 10.43 5,304,784 560.72M clavichord93/MENet Success
MobileNet x0.25 45.78 22.18 470,072 42.30M osmr's repo Success
MobileNet x0.5 36.12 14.81 1,331,592 152.04M osmr's repo Success
MobileNet x0.75 32.71 12.28 2,585,560 329.22M Gluon Model Zoo Success
MobileNet x1.0 29.25 10.03 4,231,976 573.83M Gluon Model Zoo Success
FD-MobileNet x0.25 56.19 31.38 383,160 12.44M osmr's repo Success
FD-MobileNet x0.5 42.62 19.69 993,928 40.93M osmr's repo Success
FD-MobileNet x1.0 35.95 14.72 2,901,288 146.08M clavichord93/FD-MobileNet Success
MobileNetV2 x0.25 48.89 25.24 1,516,392 32.22M Gluon Model Zoo Success
MobileNetV2 x0.5 35.51 14.64 1,964,736 95.62M Gluon Model Zoo Success
MobileNetV2 x0.75 30.82 11.26 2,627,592 191.61M Gluon Model Zoo Success
MobileNetV2 x1.0 28.51 9.90 3,504,960 320.19M Gluon Model Zoo Success
NASNet-A-Mobile 25.37 7.95 5,289,978 587.29M Cadene's repo Success
InceptionV3 21.22 5.59 23,834,568 5,746.72M Gluon Model Zoo Success
AirNet50-1x64d (r=2) 22.48 6.21 27,425,864 4,757.77M soeaver/AirNet-PyTorch Success
AirNet50-1x64d (r=16) 22.91 6.46 25,714,952 4,385.54M soeaver/AirNet-PyTorch Success
AirNeXt50-32x4d (r=2) 20.87 5.51 27,604,296 5,321.18M soeaver/AirNet-PyTorch Success
DiracNetV2-18 31.47 11.70 11,511,784 1,798.43M szagoruyko/diracnets Success
DiracNetV2-34 28.75 9.93 21,616,232 3,649.37M szagoruyko/diracnets Success
DARTS 26.70 8.74 4,718,752 537.64M szagoruyko/diracnets Success
PolyNet 19.10 4.52 95,366,600 34,768.84M Cadene's repo Success
ZfNet ? ? ? ? osmr's repo Success
FishNet-150 22.85 6.38 24,959,400 6,435.02M osmr's repo Success

Segmentation models converted with gluon2pytorch

Name Model pixAcc mIoU Source weights Remarks
fcn_resnet101_coco FCN 92.2 66.2 Gluon Model Zoo Success
fcn_resnet101_voc FCN N/A 83.6 Gluon Model Zoo Success

Code snippets

Look at the tests directory.

License

This software is covered by MIT License.