English: Using 39 of the 66 antennas of the Atacama Large Millimeter/submillimeter Array (ALMA), located 5000 metres up on the Chajnantor plateau in the Chilean Andes, astronomers have been able to detect carbon monoxide (CO) in the disc of debris around an F-type star. Although carbon monoxide is the second most common molecule in the interstellar medium, after molecular hydrogen, this is the first time that CO has been detected around a star of this type. The star, named HD 181327, is a member of the Beta Pictoris moving group, located almost 170 light-years from Earth.
Until now, the presence of CO has been detected only around a few A-type stars, substantially more massive and luminous than HD 181327. Using the superb spatial resolution and sensitivity offered by the ALMA observatory astronomers were now able to capture this stunning ring of smoke and map the density of the CO within the disc.
The study of debris discs is one way to characterize planetary systems and the results of planet formation. The CO gas is found to be co-located with the dust grains in the ring of debris and to have been produced recently. Destructive collisions of icy planetesimals in the disc are possible sources for the continuous replenishment of the CO gas. Collisions in debris discs typically require the icy bodies to be gravitationally perturbed by larger objects in order to reach sufficient collisional velocities. Moreover, the derived CO composition of the icy planetesimals in the disc is consistent with the comets in our Solar System. This possible secondary origin for the CO gas suggests that icy comets could be common around stars similar to our Sun which has strong implications for life suitability in terrestrial exoplanets.
The results were published in the journal Monthly Notices of the Royal Astronomical Society under the title “Exocometary gas in the HD 181327 debris ring” by S. Marino et al.
This media was created by the European Southern Observatory (ESO). Their website states: "Unless specifically noted, the images, videos, and music distributed on the public ESO website, along with the texts of press releases, announcements, pictures of the week, blog posts and captions, are licensed under a Creative Commons Attribution 4.0 International License, and may on a non-exclusive basis be reproduced without fee provided the credit is clear and visible." To the uploader: You must provide a link (URL) to the original file and the authorship information if available.
de partager – de copier, distribuer et transmettre cette œuvre
d’adapter – de modifier cette œuvre
Sous les conditions suivantes :
paternité – Vous devez donner les informations appropriées concernant l'auteur, fournir un lien vers la licence et indiquer si des modifications ont été faites. Vous pouvez faire cela par tout moyen raisonnable, mais en aucune façon suggérant que l’auteur vous soutient ou approuve l’utilisation que vous en faites.
https://creativecommons.org/licenses/by/4.0CC BY 4.0 Creative Commons Attribution 4.0 truetrue
Légendes
Ajoutez en une ligne la description de ce que représente ce fichier
Ce fichier contient des informations supplémentaires, probablement ajoutées par l'appareil photo numérique ou le numériseur utilisé pour le créer.
Si le fichier a été modifié depuis son état original, certains détails peuvent ne pas refléter entièrement l'image modifiée.
Logiciel utilisé
Adobe Photoshop CC 2015 (Windows)
Date de modification du fichier
18 mai 2016 à 10:17
Date et heure de la numérisation
18 mai 2016 à 11:57
Date de la dernière modification des métadonnées
18 mai 2016 à 12:17
Crédit ou fournisseur
ESO/Marino et al.
Source
European Southern Observatory
Identifiant unique du document original
xmp.did:db56a5ec-32db-a94b-8c88-0ee7a4be12ad
Titre court
New insights into debris discs
Titre de l’image
Using 39 of the 66 antennas of the Atacama Large Millimeter/submillimeter Array (ALMA), located 5000 metres up on the Chajnantor plateau in the Chilean Andes, astronomers have been able to detect carbon monoxide (CO) in the disc of debris around an F-type star. Although carbon monoxide is the second most common molecule in the interstellar medium, after molecular hydrogen, this is the first time that CO has been detected around a star of this type. The star, named HD 181327, is a member of the Beta Pictoris moving group, located almost 170 light-years from Earth. Until now, the presence of CO has been detected only around a few A-type stars, substantially more massive and luminous than HD 181327. Using the superb spatial resolution and sensitivity offered by the ALMA observatory astronomers were now able to capture this stunning ring of smoke and map the density of the CO within the disc. The study of debris discs is one way to characterise planetary systems and the results of planet formation. The CO gas is found to be co-located with the dust grains in the ring of debris and to have been produced recently. Destructive collisions of icy planetesimals in the disc are possible sources for the continuous replenishment of the CO gas. Collisions in debris discs typically require the icy bodies to be gravitationally perturbed by larger objects in order to reach sufficient collisional velocities. Moreover, the derived CO composition of the icy planetesimals in the disc is consistent with the comets in our Solar System. This possible secondary origin for the CO gas suggests that icy comets could be common around stars similar to our Sun which has strong implications for life suitability in terrestrial exoplanets. The results were published in the journal Monthly Notices of the Royal Astronomical Society under the title “Exocometary gas in the HD 181327 debris ring” by S. Marino et al. Link: Paper by Marino et al.