iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://eu.wikipedia.org/wiki/Uhin_elektromagnetiko
Erradiazio elektromagnetikoa - Wikipedia, entziklopedia askea. Edukira joan

Erradiazio elektromagnetikoa

Artikulu hau Wikipedia guztiek izan beharreko artikuluen zerrendaren parte da
Artikulu hau "Kalitatezko 2.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da
Hau artikulu on bat da. Egin klik hemen informazio gehiagorako.
Wikipedia, Entziklopedia askea
Uhin elektromagnetiko» orritik birbideratua)

Linealki polarizatutako uhin bat z-ardatzean zehar. Ek eremu elektrikoa adierazten du eta elkarzuta den Bk eremu magnetikoa.

Fisikan, erradiazio elektromagnetikoa (EMR) eremu elektromagnetikoko uhinak dira, espazioan hedatzen direnak eta momentu eta energia elektromagnetiko erradiatzailea garraiatzen dituztenak[1]. Erradiazio elektromagnetiko motak dira irrati-uhinak, mikrouhinak, infragorriak, argia (ikusgaia), izpi ultramoreak, X izpiak eta gamma izpiak, guztiak espektro elektromagnetikoaren parte direnak[2].

Eskuarki, erradiazio elektromagnetikoa uhin elektromagnetikoak dira, eremu elektriko eta magnetikoen oszilazio sinkronizatuak. Oszilazio-maiztasunaren arabera, espektro elektromagnetikoaren uhin-luzera desberdinak sortzen dira. Hutsean, uhin elektromagnetikoak argiaren abiaduran bidaiatzen dute, gisa adierazten dena. Ingurune homogeneo eta isotropoetan, bi eremuetako oszilazioak elkarrekiko perpendikularrak dira, eta energiaren eta uhinaren hedapen-norabidearekiko perpendikularrak, zeharkako uhin bat osatuz. Uhin elektromagnetiko batek espektro elektromagnetikoaren barruan duen posizioaren ezaugarria oszilazio-maiztasunaren edo uhin-luzeraren arabea finka daiteke. Maiztasun desberdineko uhin elektromagnetikoek izen desberdinak hartzen dituzte, materian jatorri eta efektu desberdinak baitituzte. Maiztasun gorakorraren eta uhin-luzera beherakorraren arabera, hauek dira: irrati-uhinak, mikrouhinak, erradiazio infragorria, argi ikusgaia, erradiazio ultramorea, X izpiak eta gamma izpiak[3].

Elektrikoki kargatuta dauden eta azelerazioa jasaten duten partikulek igortzen dituzte uhin elektromagnetikoak[4][5], eta uhin horiek, ondoren, kargatutako beste partikula batzuekin elkarreraginean jardun dezakete, haien gainean indarra eraginez. Uhin elektromagnetikoek energia, momentua eta momentu angeluarra garraiatzen dute jatorrizko partikulatik at, eta kantitate hori bera elkarrekintza duten materiari eman diezaiokete. Erradiazio elektromagnetikoa EM uhinen artean hedatzen ez direnak ("irradiatzen" direnak) sortzen dituzten karga mugikorren eragin zuzenik gabe lotzen da, karga horietatik behar adinako distantzia lortu dutelako. Beraz, batzuetan erradiazio elektromagneikoa eremu urrun gisa hartzen da. Horrela izendatzen direnean, hurbileko eremua kargetatik hurbil dauden EM eremuei eta karga horiek zuzenean sortu zituzten korronteari dagokie, zehazki indukzio elektromagnetikoko eta indukzio elektrostatikoko fenomenoei.

Mekanika kuantikoan, erradiazio elektromagnetikoa ikusteko modu alternatibo bat da fotoiz osatuta dagoela: kargarik gabeko oinarrizko partikulak, atsedeneko masa zero dutenak, eta eremu elektromagnetikoan dauden elkarrekintza elektromagnetiko guztien eragile direnak[6]. Elektrodinamika kuantikoa da erradiazio elektromagnetikoaren unitateak materiarekin maila atomikoan nola elkarreragiten duten adierazten duen teoria[7]. Efektu kuantikoek erradiazio elektromagnetikorako iturri gehigarriak azaltzen dituzte, hala nola elektroiak atomo bateko energia-maila baxuagoetara pasatzea eta gorputz beltzaren erradiazioa[8]. Banakako fotoi baten energia kuantizatuta dago, eta handiagoa da maiztasun handieneko fotoientzat. Erlazio hori Plancken ekuazioak () ematen du, non fotoiaren energia baita, fotoiaren maiztasuna eta Plancken konstantea. Gamma izpien fotoi bakar batek, adibidez, argi-fotoi ikusgarri bakar baten energia baino ~100.000 aldiz gehiago garraia dezake.

Erradiazio elektromagnetioa konposatu kimikoetan eta organismo biologikoetan duen eragina erradiazioaren potentziaren eta maiztasunaren araberakoa da. Frekuentzia ikusgarriak edo baxuagoak dituzten erradiazioei (hau da, argi ikusgaia, infragorriak, mikrouhinak eta irrati-uhinak) erradiazio ez-ionizatzaile deritze, haien fotoiek ez baitute atomoak edo molekulak ionizatzeko edo lotura kimikoak hausteko adina energia indibidualki. Erradiazio horiek sistema kimikoetan eta ehun bizietan duten eragina fotoi askoren energia-transferentzia konbinatuak eragindako berotze-efektuei zor zaie nagusiki. Aldiz, goi-frekuentziako X izpi, gamma izpi eta ultramoreei erradiazio ionizatzaile deritze, hain maiztasun handiko banakako fotoiek energia nahikoa baitute molekulak ionizatzeko edo lotura kimikoak hausteko. Erradiazio horiek erreakzio kimikoak eragiteko eta zelula biziei kalte egiteko gaitasuna dute, berotze hutsetik haratago, eta arriskutsuak izan daitezke osasunerako.

Miletoko Tales (K.a 640-546) izeneko filosofo greziarra lehena izan zen magnetismoa eta elektrizitatea aztertzen. Diotenez, erretxina fosil bat (anbarea, grezieraz elektroi) igurztean, objektu arinak erakartzeko gai zela kontura zen. Baina denbora luzea pasatu zen fenomeno hori zientzialarien intereseko gai bihurtu arte. Galileoren garaikidea zen W.Gilbert (1544-1603) fisikari eta mediku ingelesak De magnete izeneko liburua argitaratu zuen, igurtzitako zenbait objekturen portaera deskribatuz eta orratz imantatuen higidura interpretatuz, horretarako Lurra iman erraldoia zela suposatuz.

Ch. du Fay (1698-1739) izeneko fisikari frantsesak igurtzitako gorputzen arteko erakarpen eta aldarapenak behatu zituen, izaeraren arabera sailkatuz, eta horrela, bi motatako elektrizitateak (Gilbertek asmaturiko izena) daudela ondorioztatu zuen, elektrizitate erretxinakara eta elektrizitate beirakara izenak emanez.

1729an S. Gray (1696-1736) izeneko ikertzaile ingelesak elektrizitatearen kondukzioa aztertu zuen zenbait substantziatan zehar, nahiz eta oraindik elektrizitatearen izaera zein zen ulertu ez; dena den, substantzia guztiak eroaleak ez zirela ikusi zuen J.T. Desaguliers (1683-1744) fisikari frantsesak eroalea eta isolatzaile izenak proposatu zituen elektrizitatearen igaroketa ahalbidetzen edo, oztopatzen duten substantziak izendatzeko, hurrenez hurren.

Benjamin Franklin (1706-1790) izeneko zientzialari iparramerikarrak fluido bat bailitzan deskribatu zuen elektrizitatea, horren agerpenak fluido gehiegi edo gutxiegi izatearen araberako zirela esanik. Horrela, berak proposaturiko nomenklaturaren arabera, karga positiboa edo karga negatiboa duten gorputzak izan ditzakegu. Franklinek ekaitzetako hodeiak elektrizitatez kargaturik daudela frogatu zuen. Horretarako esperimentu oso famatu eta arriskugarria burutu zuen. Ekaitz bortitz baten erdian, punta metalikoa zuen kometa bat jarri zuen airean zetazko hari luze batekin konektaturik. Franklinek erabilgarritasun handiko asmakizunaz osatu zuen ikerketa: tximistorratza.

1785ean Ch. de Coulomb (1736-1806) izeneko fisikari frantsesak tortsio-balantza asmatu zuen, oso intentsitate txikiko indar elektrikoak neurtu ahal izateko. Horri esker Coulomben legea deritzon lege ospetsua enuntziatu ahal izan zuen. XIX. mendearen hasiera aldean asmakizun ikusgarria burutu zen: Voltaren pila. Hain zuzen, 1800ean A.Volta (1745-1827) fisikari italiarrak korronte elektrikoa sortu zuen lehen aldiz, gatz-disoluzio baten kontaktuan zeuden bi metalen (zilarra eta zinka) arteko erreakzio kimikoen bidez.

1820 urtea ere garrantzitsua izan zen zientziaren historia: H.Ch. Oersted (1777-1851) izeneko fisikari daniarrak elektrizitatearen eta magnetismoaren arteko erlazio sakona aurkitu zuen, korronte elektrikoa iparrorratzaren orratz imantatuaren desbideratzea sortzeko gai zela konturatzean. Aurkikuntza horrek zientzialari askoren jakin-nahia piztu zuen, eta horiek fenomenoaren izaeran sakondu zuten, hala nola, A.M. Ampère (1775-1836) matematikari eta fisikari frantsesak.

M. Faraday (1791-1867) izeneko fisikari eta kimikari ingelesak esperimentu eraginkorra burutu zuen; izan ere, ordutik aurrera esperimentu horren eragina ikaragarria izan da, aplikazio garrantzitsuak izan baititu. Hain zuzen, esperimentu horretan indukzio elektromagnetikoa aurkitu zuen, energia mekanikoaren bidezko sorgailu elektrikoen funtsa dena. Faradayk frogatu zuenez, alanbrezko haril baten barnean iman bat higiarazten, harilean korronte elektrikoa sortzen da. Faradayri sor dizkiogu eremu eta indar-lerro kontzeptuak, hain zuzen, Newtonek ezarritako unibertsoaren ikuspegi mekanikoaren apurketa ekarri zutenak.

J.Henry (1797-1878) izeneko fisikari iparramerikarrak ere hainbeste lan interesgarri burutu zituen elektromagnetikaren arloan. Henryk ere aurkitu zuen indukzioa; horrez gain elektroimanak, motor elektrikoak eta beste tramankulu batzuk fabrikatu zituen. Baina elektromagnetismoaren formulazio matematikoa burutu zuena XIX. mendeko fisikari handiena izan zen: J.C.Maxwell. Faradayk indar-lerroei buruz azaldutako ideietatik abiatuz, Maxwellek ideia horiek sakondu eta eremu elektrikoa eta eremu magnetikoa eroaleek eta imanek sorturiko efektu magnetikoa eroaleek eta imanek sorturiko efektu magnetikoen ondorioak direla azaldu zuen. Trebetasun matematiko ikaragarriari esker, elektromagnetismoaren izaera eta propietateak formulatu ahal izan zituen bere izena daramaten ekuazioen bidez. Ekuazio horiek eremu magnetikoaren eta eremu elektrikoaren arteko erlazio estuak adierazten dituzte.

Erradiazio elektromagnetikoaren fisika

[aldatu | aldatu iturburu kodea]

Eremu elektriko eta magnetikoek gainezarmen printzipioa betetzen dute, hau da, iturri batek sortutako eremua, beste iturri batek sortutako eremuari batu egiten zaiola eremu osoa lortzeko. Beste era batera esanda, eremu elektriko eta magnetikoak bektoreak diren heinean, eremu osoa eskualde batean hainbat iturriek sortutako eremuen batura bektoriala izango da. Honen ondorioz erradiazio elektromagnetikoak ezaugarri bereziak azaltzen ditu, hala nola, errefrakzioa eta difrakzioa.

Erradiazio elektromagnetikoa aztertzen duen fisika, elektrodinamika da, elektromagnetismoaren azpi-arlo bat.

Erradiazio elektromagnetikoak bi izaera ezberdin aurkezten ditu: uhin izaera edo partikula izaera (ikus bedi uhin-partikula dualtasuna). Bi izaera ezberdin hauek ez dira inoiz batera azaltzen eta sistema fisiko batek bata zein bestea erakutsi dezake burutako esperimentu edo neurketaren arabera.

Erradiazio elektromagnetikoaren uhin-izaeraren alde garrantzitsu bat maiztasuna da. Uhin baten maiztasuna hertz-etan neurtzen da NUS-en eta denbora unitateko uhinak burutzen dituen oszilazioak neurtzen ditu. Argia esaterako (Erradiazio elektromagnetikoa dena), maiztasun ezberdineko uhin elektromagnetikoen gainezarmena da. Maiztasunak errefrakzioa bezalako propietateen gainean eragiten du, ingurune askoren errefrakzio indizea maiztasunaren araberakoa baita.

Uhin baten oszilazioak maximo zein minimoak erakusten ditu espazioan hedatzen denean. Uhin-luzera maximo biren edo minimo biren arteko distantzia espaziala dugu. Espektro elektromagnetikoaren barruan hainbat uhin luzera ezberdinetako uhinak aurkitzen ditugu, uhin-luzera txikiko gamma izpietatik, uhin-luzera handiko irrati-uhinetara.

Maiztasuna uhin luzerarekiko alderantziz proportzionala da. Uhin elektromagnetikoak ingurune batetik bestera pasatzerakoan (errefrakzio prozesu bat esaterako) euren maiztasuna aldatu gabe mantentzen dute, hots, hedapen-abiadura eta uhin-luzera dira aldatzen direnak. Izan ere, honako erlazioa betetzen da:

non hedapen-abidura, uhin-luzera eta maiztasuna diren.

Hutsean bereziki:

Erradiazio elektromagnetikoak uhin-izaera erakusten duenean interferentzia eta difrakzio erako fenomenoak azaltzen dira.

Partikula izaera

[aldatu | aldatu iturburu kodea]

Erradiazio elektromagnetikoaren partikulen teorian, erradiazio elektromagnetikoa fotoi deituriko partikuletan kuantizatua dago. Kuanto hauek uhinaren energiaren diskretizazioa adierazten dute, kuanto edo fotoi baten energia Plack-en konstantearen eta uhinaren frekuentziaren arteko biderkadura izanik:

Kargadun partikulek fotoiak igorri zein xurga ditzakete. Prozesuan fotoiek "energia garraiatzailearen" papera jokatuz.

Atomo batek fotoi bat xurga dezake elektroi bat kitzikatu eta energi-maila altuago batera eramanez. Fotoiak eramandako energia nahikoa baldin bada, elektroiak nukleoaren indar erakarletik ihes egin dezake ionizazioa deituriko prozesuan. Alderantziz, elektroi bat maila altu batetik maila baxuago batera jaisten denean (energia-maila trantsizioa) fotoi bat igor dezake, igorritako fotoiaren energia bi mailen arteko energia-diferentziarena izanik. Hori dela eta, elementu kimiko bakoitzak bere frekuentzia propioak ditu, hau da, bere espektro propioa.

Aipatutako bi efektu hauek argiaren xurgapen espektroari eta igorpen espektroari azalpena ematen diote. Horrela, esaterako, izar batek igorritako espektroan ager daitezkeen banda ilunetatik izarraren konposizioa jakin daiteke, atomo bakoitzak bere xurgapen-espektro propioa daukalako, hots, atomo bakoitzak baimenduriko energia trantsizio zehatzak dituelako. Banda ilunek xurgaturiko uhin-luzera adierazten dituzte. Era berean, atomoaren igorpen espektroa ere diskretua eta propioa da. Azken honi esker astrofisikoek lurretik izar baterainoko distantzia kalkula dezakete gorrirako desplazamendua deitzen den teknikari esker.

Espektro elektromagnetikoa

[aldatu | aldatu iturburu kodea]

Erradiazio elektromagnetikoa bere uhin-luzeraren arabera sailkatzen da eskuarki. Uhin-luzera txikiagoa den heinean, erradiazioa energetikoagoa dela diogu. Erradiazio bortitzena energiaren ikuspuntutik gamma-izpiei dagokiona da eta ahulena irrati uhinei. Uhin-luzera guztien multzoari espektro elektromagnetiko deritzogu.

400 nm eta 700 nm bitarteko erradiazio elektromagnetikoari espektro ikusgai deritzogu giza-begiak antzeman dezakeelako.

Gizakiok ingurunean dauden objektuak antzemateko gai gara, hauek espektro-ikuskorrari dagozkion uhin-luzeradun erradiazio elektromagnetikoak islatzen dituztelako, hau da, argia. Argia begietatik sartu eta bai begi eta bai burmuinak besartzen dituen prozesu psikofisiko bati esker ikusmena sortzen da.

Gehienetan ordean erradiazio elektromagnetikoak dakarren informazio guztia ezin daiteke giza-zentzumenen bidez antzeman espektro ikuskorretik at dagoelako.

Mikrouhinen bitartez zenbait molekula kitzikatu eta honen bitartez, hauek beroa igortzea badago. Honetan oinarritzen dira mikrouhin labeak.

Molekulen espektro errotazionala daukate, hots, zenbat energiatarako bira dezakete. Biraketa honetan molekulek energia igortzen dute. Mikrouhin labeak uhin-luzera zehatzeko mikrouhinak igortzen ditu, uhin-luzerari dagokion energia ur molekula biratzeko behar denari badagokio, ur molekula biratzen hasiko da jatekoa berotuz.

Irrati-uhinak

[aldatu | aldatu iturburu kodea]

Irrati-uhinek uhin-luzera eta anplitude aldaketetan oinarritako sistemei esker garraiatzen dute informazioa komunikazioen arloan.

Erradiazio elektromagnetikoek eroale batekin topo egitean honi elkartu eta bere baitan dauden elektroi askeak kitzikatu eta korronte elektriko bat sorten dute. Antenak efektu honetan oinarritzen dira. Irrati batean esaterako, eroalean sortutako korrontearen ezaugarriak, eroalea (antena) erasotutako erradiazioan dute kausa. Ondorioz, irratiaren baitan dagoen zirkuituaren osagaiak manipulatuz, erradiazio elektromagnetikoak sortutako korrontea zirkuituarekin erresonantzian jarri eta seinalea anplifikatzea dago. Hauxe da sintonizazioa, irrati batean dagoen zirkuitua, kanpotik etorritako erradiazio elektromagnetikoak sorturiko elektroien korrontearekin erresonantzian jartzea.

Erradiazio elektromagnetikoari lotutako fenomeno batzuk

[aldatu | aldatu iturburu kodea]
Prisma batek sakabanatutako argi izpi jarrai baten animazio eskematikoa. Izpi zuriak ikusgai diren uhin-luzera ugari adierazten du, horietatik 7 erakusten dira. Hutsean abiadura berdinarekin bidaiatzen dute. Prismak argia moteldu egiten du eta horrek bere bidea makurtzen du errefrakzio prozesuaren bidez. Eragin hori indartsuagoa da uhin-luzera laburragoetan (mutur bioleta) uhin-luzera luzeagoetan (mutur gorria) baino, eta horrela osagaiak sakabanatzen dira. Prismatik irten ahala, osagai bakoitza jatorrizko abiadura berdinera itzultzen da eta berriro errefraktatzen da.

Erradiazio elektromagnetikoaren abiadura hutsean da. Aipatu bezala, teoria elektromagnetikoak esaten digu:

hutsaren permitibitate elektrikoa eta hutsaren iragazkortasun magnetikoa diren. Inguru material baten ordea permitibitate elektrikoa eta iragazkortasun magnetikoak balio ezberdinak dituzte. Ondorioz, argi edo erradiazio magnetikoaren abiadura ezberdina izango da ingurune horietan.

Argiak ingurunez aldatzen duenean norabide aldaketa bat jasaten du, bi inguruneak banatzen dituen gainazalaren normalak osatzen duen eraso angeluaren menpekoa baita abiadurarena ere (edo errefrakzio indizearena). Fenomeno hau erraz ikus daiteke uretan sartzen diren objektuetan. Beraz ingurune horietan argiaren abiadura:

izango da.

Errefrakzioa gertatzen denekotan Snell-en legea betetzen da.

Prisma bat zeharkatzean gertatzen den dispertsioa

Ingurune askotan permitibitate elektrikoa eta iragazkortasun magnetikoa uhin-luzeraren menpekoa da. Honen ondorio hedapen abiadurak uhin-luzerarekiko menpekotasuna du. Horregatik esan genezake argiaren kolore bakoitzak desbiderapen ezberdinak jasaten dituela erradiazio elektromagnetiko ez-monokromatiko batek ingurunez aldatzen duenean.

Adibide moduan argi zuriak prisma bat zeharkatzen duenekoa. Uhin-luzera ezberdinek desbiderapen ezberdina jasaten dute, irudian ikus daitekeen fenomenoa sortuz.

Uhin ekuazioaren ondorioztatze matematikoa

[aldatu | aldatu iturburu kodea]

Lehen esan dugu Maxwellek bere izena daramaten ekuazioak manipulatuz uhin elektromagnetikoen uhin ekuazioa erdietsi zuela. Maxwellen ekuazioak honakoak dira:

Non eremu elektrikoa eta eremu magnetikoaren diren. Bestalde, elektromagnetismoak honako bektoreak ere definitzen ditu:

Analisi matematikoak emandako identitate honetaz baliatuko gara ere bai:

Non edozein bektore eta Laplaziar eragilea edo laplaziarra diren.

Aplika diezaiogun errotazionala ekuazioari eta ondoren ere erabil dezagun:

Orain , eta erabiliz:

Aipatutako identitatea aplikatuko dugu ekuazioarekin batera :

eta konbinatuz:

Jakinik bestalde uhin ekuazioa honela idazten dela:

Esan dezakegu beraz eremu elektrikoak uhin ekuazioa betetzen duela non argiaren abiadura den hutsean.

Antzeko frogapena egin daiteke eremu magnetikorako.

Bestetik, Maxwellen ekuazioetatik abiatuta froga daiteke eremu magnetiko eta elektrikoak elkarren perpendikularrak direla eta biak hedapen-norabidearekiko perpendikularrak direla ere bai.

Kontsidera bedi edozein eremu elektriko:

Non anplitudea , bi aldiz diferentziagarria den edozein funtzio, hedapen-norabidearen bektore unitarioa eta posizio bektorea diren.

Noski, uhin ekuazioaren soluzio orokorra da.

Beraz, hauxe betetzen da hartutako bektorerako:

Edozein bektore unitarioak duen norabiderako.

Baina, Zer bete behar du soluzioa den funtzio orokor honek Maxwell-en ekuazioen soluzioa izateko?

Honek esaten digu eremu elektrikoa hedapen-norabidearekiko perpendikularra dela.

Eremu magnetikorako:

Beraz aukeratutako eremu elektrikorako bektore orokor horrek Maxwell-en bi ekuazio hauek eta beste guztiak betetzen ditu froga daitekeenez. Ondorioz eremuen norabideari buruzkoa betetzen da.

Erreferentziak

[aldatu | aldatu iturburu kodea]
  1. Morin, David J.. (2013). Electricity and magnetism. (3. ed., reprint. with corr. argitaraldia) Cambridge Univ. Press ISBN 978-1-107-01402-2. (Noiz kontsultatua: 2023-09-05).
  2. Browne, Michael E.. (2010). Physics for engineering and science: 788 fully solved problems ; concise explanations of all course concepts ; complete coverage of Newton's laws of motion, waves and sounds, the first and second laws of thermodynamics, capacitance, and magnetic fields ; use with these courses: principles of physics, elements of physics, introductory college physics, general physics, physics of engineering. (2. ed. argitaraldia) McGraw-Hill ISBN 978-0-07-161399-6. (Noiz kontsultatua: 2023-09-05).
  3. (Ingelesez) «VIII. A dynamical theory of the electromagnetic field» Philosophical Transactions of the Royal Society of London 155: 459–512. 1865-12-31  doi:10.1098/rstl.1865.0008. ISSN 0261-0523. (Noiz kontsultatua: 2023-09-05).
  4. Cloude, Shane. (1995). An introduction to electromagnetic wave propagation and antennas. Springer [u.a.] ISBN 978-0-387-91501-2. (Noiz kontsultatua: 2023-09-05).
  5. Bettini, Alessandro. (2017). A course in classical physics. 4: Waves and light / Alessandro Bettini. Springer ISBN 978-3-319-48329-0. (Noiz kontsultatua: 2023-09-05).
  6. (Ingelesez) «The dual nature of light as reflected in the Nobel archives» NobelPrize.org (Noiz kontsultatua: 2023-09-05).
  7. «Electromagnetic Spectrum | Encyclopedia.com» www.encyclopedia.com (Noiz kontsultatua: 2023-09-05).
  8. Tipler, Paul Allen. (1999). Physics. 1: Mechanics, oscillations and waves, thermodynamics. (4.ed. argitaraldia) Worth Publ ISBN 978-1-57259-491-3. (Noiz kontsultatua: 2023-09-05).

Ikus, gainera

[aldatu | aldatu iturburu kodea]

Kanpo estekak

[aldatu | aldatu iturburu kodea]


Espektro elektromagnetikoa

 gamma izpiak • X izpiak • ultramoreak • argia • infragorriak • mikrouhinak • irrati uhinak 
Koloreak

  ultramorea morea urdina berdea horia laranja gorria infragorria