iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://en.wikipedia.org/wiki/Rhombitetraapeirogonal_tiling
Rhombitetraapeirogonal tiling - Wikipedia Jump to content

Rhombitetraapeirogonal tiling

From Wikipedia, the free encyclopedia
Rhombitetraapeirogonal tiling
Rhombitetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.4.∞.4
Schläfli symbol rr{∞,4} or
Wythoff symbol 4 | ∞ 2
Coxeter diagram or
Symmetry group [∞,4], (*∞42)
Dual Deltoidal tetraapeirogonal tiling
Properties Vertex-transitive

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

Constructions

[edit]

There are two uniform constructions of this tiling, one from [∞,4] or (*∞42) symmetry, and secondly removing the mirror middle, [∞,1+,4], gives a rectangular fundamental domain [∞,∞,∞], (*∞222).

Two uniform constructions of 4.4.4.∞
Name Rhombitetrahexagonal tiling
Image
Symmetry [∞,4]
(*∞42)
[∞,∞,∞] = [∞,1+,4]
(*∞222)
Schläfli symbol rr{∞,4} t0,1,2,3{∞,∞,∞}
Coxeter diagram

Symmetry

[edit]

The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.

[edit]
*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*∞42
[∞,4]
Expanded
figures
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
Rhombic
figures
config.

V3.4.4.4

V4.4.4.4

V5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V∞.4.4.4
Paracompact uniform tilings in [∞,4] family
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)

=

=
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
Alternation duals
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞

See also

[edit]

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
[edit]