iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://en.wikipedia.org/wiki/Fermat_pseudoprime
Fermat pseudoprime - Wikipedia Jump to content

Fermat pseudoprime

From Wikipedia, the free encyclopedia

In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.

Definition

[edit]

Fermat's little theorem states that if p is prime and a is coprime to p, then ap−1 − 1 is divisible by p. For a positive integer a, if a composite integer x divides ax−1 − 1, then x is called a Fermat pseudoprime to base a. [1]: Def. 3.32  In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a.[2] The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis.

The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.

Pseudoprimes to base 2 are sometimes called Sarrus numbers, after P. F. Sarrus who discovered that 341 has this property, Poulet numbers, after P. Poulet who made a table of such numbers, or Fermatians (sequence A001567 in the OEIS).

A Fermat pseudoprime is often called a pseudoprime, with the modifier Fermat being understood.

An integer x that is a Fermat pseudoprime for all values of a that are coprime to x is called a Carmichael number.[2][1]: Def. 3.34 

Properties

[edit]

Distribution

[edit]

There are infinitely many pseudoprimes to any given base a > 1. In 1904, Cipolla showed how to produce an infinite number of pseudoprimes to base a > 1: let A = (ap - 1)/(a - 1) and let B = (ap + 1)/(a + 1), where p is a prime number that does not divide a(a2 - 1). Then n = AB is composite, and is a pseudoprime to base a.[3][4] For example, if a = 2 and p = 5, then A = 31, B = 11, and n = 341 is a pseudoprime to base 2.

In fact, there are infinitely many strong pseudoprimes to any base greater than 1 (see Theorem 1 of [5]) and infinitely many Carmichael numbers,[6] but they are comparatively rare. There are three pseudoprimes to base 2 below 1000, 245 below one million, and 21853 less than 25·109. There are 4842 strong pseudoprimes base 2 and 2163 Carmichael numbers below this limit (see Table 1 of [5]).

Starting at 17·257, the product of consecutive Fermat numbers is a base-2 pseudoprime, and so are all Fermat composites and Mersenne composites.

The probability of a composite number n passing the Fermat test approaches zero for . Specifically, Kim and Pomerance showed the following: The probability that a random odd number n ≤ x is a Fermat pseudoprime to a random base is less than 2.77·10-8 for x= 10100, and is at most (log x)-197<10-10,000 for x≥10100,000.[7]

Factorizations

[edit]

The factorizations of the 60 Poulet numbers up to 60787, including 13 Carmichael numbers (in bold), are in the following table.

(sequence A001567 in the OEIS)

Poulet 1 to 15
341 11 · 31
561 3 · 11 · 17
645 3 · 5 · 43
1105 5 · 13 · 17
1387 19 · 73
1729 7 · 13 · 19
1905 3 · 5 · 127
2047 23 · 89
2465 5 · 17 · 29
2701 37 · 73
2821 7 · 13 · 31
3277 29 · 113
4033 37 · 109
4369 17 · 257
4371 3 · 31 · 47
Poulet 16 to 30
4681 31 · 151
5461 43 · 127
6601 7 · 23 · 41
7957 73 · 109
8321 53 · 157
8481 3 · 11 · 257
8911 7 · 19 · 67
10261 31 · 331
10585 5 · 29 · 73
11305 5 · 7 · 17 · 19
12801 3 · 17 · 251
13741 7 · 13 · 151
13747 59 · 233
13981 11 · 31 · 41
14491 43 · 337
Poulet 31 to 45
15709 23 · 683
15841 7 · 31 · 73
16705 5 · 13 · 257
18705 3 · 5 · 29 · 43
18721 97 · 193
19951 71 · 281
23001 3 · 11 · 17 · 41
23377 97 · 241
25761 3 · 31 · 277
29341 13 · 37 · 61
30121 7 · 13 · 331
30889 17 · 23 · 79
31417 89 · 353
31609 73 · 433
31621 103 · 307
Poulet 46 to 60
33153 3 · 43 · 257
34945 5 · 29 · 241
35333 89 · 397
39865 5 · 7 · 17 · 67
41041 7 · 11 · 13 · 41
41665 5 · 13 · 641
42799 127 · 337
46657 13 · 37 · 97
49141 157 · 313
49981 151 · 331
52633 7 · 73 · 103
55245 3 · 5 · 29 · 127
57421 7 · 13 · 631
60701 101 · 601
60787 89 · 683

A Poulet number all of whose divisors d divide 2d − 2 is called a super-Poulet number. There are infinitely many Poulet numbers which are not super-Poulet Numbers.[8]

Smallest Fermat pseudoprimes

[edit]

The smallest pseudoprime for each base a ≤ 200 is given in the following table; the colors mark the number of prime factors. Unlike in the definition at the start of the article, pseudoprimes below a are excluded in the table. (For that to allow pseudoprimes below a, see OEISA090086)

(sequence A007535 in the OEIS)

a smallest p-p a smallest p-p a smallest p-p a smallest p-p
1 4 = 2² 51 65 = 5 · 13 101 175 = 5² · 7 151 175 = 5² · 7
2 341 = 11 · 31 52 85 = 5 · 17 102 133 = 7 · 19 152 153 = 3² · 17
3 91 = 7 · 13 53 65 = 5 · 13 103 133 = 7 · 19 153 209 = 11 · 19
4 15 = 3 · 5 54 55 = 5 · 11 104 105 = 3 · 5 · 7 154 155 = 5 · 31
5 124 = 2² · 31 55 63 = 3² · 7 105 451 = 11 · 41 155 231 = 3 · 7 · 11
6 35 = 5 · 7 56 57 = 3 · 19 106 133 = 7 · 19 156 217 = 7 · 31
7 25 = 5² 57 65 = 5 · 13 107 133 = 7 · 19 157 186 = 2 · 3 · 31
8 9 = 3² 58 133 = 7 · 19 108 341 = 11 · 31 158 159 = 3 · 53
9 28 = 2² · 7 59 87 = 3 · 29 109 117 = 3² · 13 159 247 = 13 · 19
10 33 = 3 · 11 60 341 = 11 · 31 110 111 = 3 · 37 160 161 = 7 · 23
11 15 = 3 · 5 61 91 = 7 · 13 111 190 = 2 · 5 · 19 161 190 = 2 · 5 · 19
12 65 = 5 · 13 62 63 = 3² · 7 112 121 = 11² 162 481 = 13 · 37
13 21 = 3 · 7 63 341 = 11 · 31 113 133 = 7 · 19 163 186 = 2 · 3 · 31
14 15 = 3 · 5 64 65 = 5 · 13 114 115 = 5 · 23 164 165 = 3 · 5 · 11
15 341 = 11 · 31 65 112 = 2⁴ · 7 115 133 = 7 · 19 165 172 = 2² · 43
16 51 = 3 · 17 66 91 = 7 · 13 116 117 = 3² · 13 166 301 = 7 · 43
17 45 = 3² · 5 67 85 = 5 · 17 117 145 = 5 · 29 167 231 = 3 · 7 · 11
18 25 = 5² 68 69 = 3 · 23 118 119 = 7 · 17 168 169 = 13²
19 45 = 3² · 5 69 85 = 5 · 17 119 177 = 3 · 59 169 231 = 3 · 7 · 11
20 21 = 3 · 7 70 169 = 13² 120 121 = 11² 170 171 = 3² · 19
21 55 = 5 · 11 71 105 = 3 · 5 · 7 121 133 = 7 · 19 171 215 = 5 · 43
22 69 = 3 · 23 72 85 = 5 · 17 122 123 = 3 · 41 172 247 = 13 · 19
23 33 = 3 · 11 73 111 = 3 · 37 123 217 = 7 · 31 173 205 = 5 · 41
24 25 = 5² 74 75 = 3 · 5² 124 125 = 5³ 174 175 = 5² · 7
25 28 = 2² · 7 75 91 = 7 · 13 125 133 = 7 · 19 175 319 = 11 · 19
26 27 = 3³ 76 77 = 7 · 11 126 247 = 13 · 19 176 177 = 3 · 59
27 65 = 5 · 13 77 247 = 13 · 19 127 153 = 3² · 17 177 196 = 2² · 7²
28 45 = 3² · 5 78 341 = 11 · 31 128 129 = 3 · 43 178 247 = 13 · 19
29 35 = 5 · 7 79 91 = 7 · 13 129 217 = 7 · 31 179 185 = 5 · 37
30 49 = 7² 80 81 = 3⁴ 130 217 = 7 · 31 180 217 = 7 · 31
31 49 = 7² 81 85 = 5 · 17 131 143 = 11 · 13 181 195 = 3 · 5 · 13
32 33 = 3 · 11 82 91 = 7 · 13 132 133 = 7 · 19 182 183 = 3 · 61
33 85 = 5 · 17 83 105 = 3 · 5 · 7 133 145 = 5 · 29 183 221 = 13 · 17
34 35 = 5 · 7 84 85 = 5 · 17 134 135 = 3³ · 5 184 185 = 5 · 37
35 51 = 3 · 17 85 129 = 3 · 43 135 221 = 13 · 17 185 217 = 7 · 31
36 91 = 7 · 13 86 87 = 3 · 29 136 265 = 5 · 53 186 187 = 11 · 17
37 45 = 3² · 5 87 91 = 7 · 13 137 148 = 2² · 37 187 217 = 7 · 31
38 39 = 3 · 13 88 91 = 7 · 13 138 259 = 7 · 37 188 189 = 3³ · 7
39 95 = 5 · 19 89 99 = 3² · 11 139 161 = 7 · 23 189 235 = 5 · 47
40 91 = 7 · 13 90 91 = 7 · 13 140 141 = 3 · 47 190 231 = 3 · 7 · 11
41 105 = 3 · 5 · 7 91 115 = 5 · 23 141 355 = 5 · 71 191 217 = 7 · 31
42 205 = 5 · 41 92 93 = 3 · 31 142 143 = 11 · 13 192 217 = 7 · 31
43 77 = 7 · 11 93 301 = 7 · 43 143 213 = 3 · 71 193 276 = 2² · 3 · 23
44 45 = 3² · 5 94 95 = 5 · 19 144 145 = 5 · 29 194 195 = 3 · 5 · 13
45 76 = 2² · 19 95 141 = 3 · 47 145 153 = 3² · 17 195 259 = 7 · 37
46 133 = 7 · 19 96 133 = 7 · 19 146 147 = 3 · 7² 196 205 = 5 · 41
47 65 = 5 · 13 97 105 = 3 · 5 · 7 147 169 = 13² 197 231 = 3 · 7 · 11
48 49 = 7² 98 99 = 3² · 11 148 231 = 3 · 7 · 11 198 247 = 13 · 19
49 66 = 2 · 3 · 11 99 145 = 5 · 29 149 175 = 5² · 7 199 225 = 3² · 5²
50 51 = 3 · 17 100 153 = 3² · 17 150 169 = 13² 200 201 = 3 · 67

List of Fermat pseudoprimes in fixed base n

[edit]
n First few Fermat pseudoprimes in base n OEIS sequence
1 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, ... (All composites) A002808
2 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ... A001567
3 91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ... A005935
4 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ... A020136
5 4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ... A005936
6 35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 4123, 4495, 5713, 6533, 6601, 8029, 8365, 8911, 9331, 9881, ... A005937
7 6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, ... A005938
8 9, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651, 861, 949, 1001, 1105, 1281, 1365, 1387, 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 4371, 4641, 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481, 8911, 9265, 9709, 9773, 9881, 9945, ... A020137
9 4, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036, 1105, 1288, 1387, 1541, 1729, 1891, 2465, 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 8744, 8866, 8911, ... A020138
10 9, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333, 3367, 4141, 4187, 4521, 5461, 6533, 6541, 6601, 7107, 7471, 7777, 8149, 8401, 8911, ... A005939
11 10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730, ... A020139
12 65, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885, 1891, 2041, 2233, 2465, 2701, 2821, 2983, 3367, 3553, 5005, 5365, 5551, 5785, 6061, 6305, 6601, 8911, 9073, ... A020140
13 4, 6, 12, 21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465, 2806, 3605, 5028, 5149, 5185, 5565, 6601, 7107, 8841, 8911, 9577, 9637, ... A020141
14 15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6533, 6541, 7107, 7171, 7449, 7543, 7585, 8321, 9073, ... A020142
15 14, 341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 6601, 7471, 8701, 8911, 9073, ... A020143
16 15, 51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285, 1387, 1581, 1687, 1695, 1729, 1891, 1905, 2047, 2071, 2091, 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 6601, 6643, 7471, 7735, 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9605, 9919, ... A020144
17 4, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991, 4005, 4033, 4187, 4912, 5365, 5662, 5833, 6601, 6697, 7171, 8481, 8911, ... A020145
18 25, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225, 1369, 1387, 1649, 1729, 1921, 2149, 2465, 2701, 2821, 2825, 2977, 3325, 4165, 4577, 4753, 5525, 5725, 5833, 5941, 6305, 6517, 6601, 7345, 8911, 9061, ... A020146
19 6, 9, 15, 18, 45, 49, 153, 169, 343, 561, 637, 889, 905, 906, 1035, 1105, 1629, 1661, 1849, 1891, 2353, 2465, 2701, 2821, 2955, 3201, 4033, 4681, 5461, 5466, 5713, 6223, 6541, 6601, 6697, 7957, 8145, 8281, 8401, 8869, 9211, 9997, ... A020147
20 21, 57, 133, 231, 399, 561, 671, 861, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2501, 2761, 2821, 2947, 3059, 3201, 4047, 5271, 5461, 5473, 5713, 5833, 6601, 6817, 7999, 8421, 8911, ... A020148
21 4, 10, 20, 55, 65, 85, 221, 703, 793, 1045, 1105, 1852, 2035, 2465, 3781, 4630, 5185, 5473, 5995, 6541, 7363, 8695, 8965, 9061, ... A020149
22 21, 69, 91, 105, 161, 169, 345, 483, 485, 645, 805, 1105, 1183, 1247, 1261, 1541, 1649, 1729, 1891, 2037, 2041, 2047, 2413, 2465, 2737, 2821, 3241, 3605, 3801, 5551, 5565, 5963, 6019, 6601, 6693, 7081, 7107, 7267, 7665, 8119, 8365, 8421, 8911, 9453, ... A020150
23 22, 33, 91, 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 946, 1027, 1045, 1065, 1105, 1183, 1271, 1729, 1738, 1749, 2059, 2321, 2465, 2501, 2701, 2821, 2926, 3097, 3445, 4033, 4081, 4345, 4371, 4681, 5005, 5149, 6253, 6369, 6533, 6541, 7189, 7267, 7957, 8321, 8365, 8651, 8745, 8911, 8965, 9805, ... A020151
24 25, 115, 175, 325, 553, 575, 805, 949, 1105, 1541, 1729, 1771, 1825, 1975, 2413, 2425, 2465, 2701, 2737, 2821, 2885, 3781, 4207, 4537, 6601, 6931, 6943, 7081, 7189, 7471, 7501, 7813, 8725, 8911, 9085, 9361, 9809, ... A020152
25 4, 6, 8, 12, 24, 28, 39, 66, 91, 124, 217, 232, 276, 403, 426, 451, 532, 561, 616, 703, 781, 804, 868, 946, 1128, 1288, 1541, 1729, 1891, 2047, 2701, 2806, 2821, 2911, 2926, 3052, 3126, 3367, 3592, 3976, 4069, 4123, 4207, 4564, 4636, 4686, 5321, 5461, 5551, 5611, 5662, 5731, 5963, 6601, 7449, 7588, 7813, 8029, 8646, 8911, 9881, 9976, ... A020153
26 9, 15, 25, 27, 45, 75, 133, 135, 153, 175, 217, 225, 259, 425, 475, 561, 589, 675, 703, 775, 925, 1035, 1065, 1147, 2465, 3145, 3325, 3385, 3565, 3825, 4123, 4525, 4741, 4921, 5041, 5425, 6093, 6475, 6525, 6601, 6697, 8029, 8695, 8911, 9073, ... A020154
27 26, 65, 91, 121, 133, 247, 259, 286, 341, 365, 481, 671, 703, 949, 1001, 1105, 1541, 1649, 1729, 1891, 2071, 2465, 2665, 2701, 2821, 2981, 2993, 3146, 3281, 3367, 3605, 3751, 4033, 4745, 4921, 4961, 5299, 5461, 5551, 5611, 5621, 6305, 6533, 6601, 7381, 7585, 7957, 8227, 8321, 8401, 8911, 9139, 9709, 9809, 9841, 9881, 9919, ... A020155
28 9, 27, 45, 87, 145, 261, 361, 529, 561, 703, 783, 785, 1105, 1305, 1413, 1431, 1885, 2041, 2413, 2465, 2871, 3201, 3277, 4553, 4699, 5149, 5181, 5365, 7065, 8149, 8321, 8401, 9841, ... A020156
29 4, 14, 15, 21, 28, 35, 52, 91, 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871, 1105, 1729, 1876, 1897, 2105, 2257, 2821, 3484, 3523, 4069, 4371, 4411, 5149, 5185, 5356, 5473, 5565, 5611, 6097, 6601, 7161, 7294, 8321, 8401, 8421, 8841, 8911, ... A020157
30 49, 91, 133, 217, 247, 341, 403, 469, 493, 589, 637, 703, 871, 899, 901, 931, 1273, 1519, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 3283, 3367, 3577, 4081, 4097, 4123, 5729, 6031, 6061, 6097, 6409, 6601, 6817, 7657, 8023, 8029, 8401, 8911, 9881, ... A020158

For more information (base 31 to 100), see OEISA020159 to OEISA020228, and for all bases up to 150, see table of Fermat pseudoprimes (text in German), this page does not define n is a pseudoprime to a base congruent to 1 or -1 (mod n)

Bases b for which n is a Fermat pseudoprime

[edit]

If composite is even, then is a Fermat pseudoprime to the trivial base . If composite is odd, then is a Fermat pseudoprime to the trivial bases .

For any composite , the number of distinct bases modulo , for which is a Fermat pseudoprime base , is [9]: Thm. 1, p. 1392 

where are the distinct prime factors of . This includes the trivial bases.

For example, for , this product is . For , the smallest such nontrivial base is .

Every odd composite is a Fermat pseudoprime to at least two nontrivial bases modulo unless is a power of 3.[9]: Cor. 1, p. 1393 

For composite n < 200, the following is a table of all bases b < n which n is a Fermat pseudoprime. If a composite number n is not in the table (or n is in the sequence A209211), then n is a pseudoprime only to the trivial base 1 modulo n.

n bases 0 < b < n to which n is a Fermat pseudoprime # of bases
OEISA063994
9 1, 8 2
15 1, 4, 11, 14 4
21 1, 8, 13, 20 4
25 1, 7, 18, 24 4
27 1, 26 2
28 1, 9, 25 3
33 1, 10, 23, 32 4
35 1, 6, 29, 34 4
39 1, 14, 25, 38 4
45 1, 8, 17, 19, 26, 28, 37, 44 8
49 1, 18, 19, 30, 31, 48 6
51 1, 16, 35, 50 4
52 1, 9, 29 3
55 1, 21, 34, 54 4
57 1, 20, 37, 56 4
63 1, 8, 55, 62 4
65 1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64 16
66 1, 25, 31, 37, 49 5
69 1, 22, 47, 68 4
70 1, 11, 51 3
75 1, 26, 49, 74 4
76 1, 45, 49 3
77 1, 34, 43, 76 4
81 1, 80 2
85 1, 4, 13, 16, 18, 21, 33, 38, 47, 52, 64, 67, 69, 72, 81, 84 16
87 1, 28, 59, 86 4
91 1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90 36
93 1, 32, 61, 92 4
95 1, 39, 56, 94 4
99 1, 10, 89, 98 4
105 1, 8, 13, 22, 29, 34, 41, 43, 62, 64, 71, 76, 83, 92, 97, 104 16
111 1, 38, 73, 110 4
112 1, 65, 81 3
115 1, 24, 91, 114 4
117 1, 8, 44, 53, 64, 73, 109, 116 8
119 1, 50, 69, 118 4
121 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 10
123 1, 40, 83, 122 4
124 1, 5, 25 3
125 1, 57, 68, 124 4
129 1, 44, 85, 128 4
130 1, 61, 81 3
133 1, 8, 11, 12, 18, 20, 26, 27, 30, 31, 37, 39, 45, 46, 50, 58, 64, 65, 68, 69, 75, 83, 87, 88, 94, 96, 102, 103, 106, 107, 113, 115, 121, 122, 125, 132 36
135 1, 26, 109, 134 4
141 1, 46, 95, 140 4
143 1, 12, 131, 142 4
145 1, 12, 17, 28, 41, 46, 57, 59, 86, 88, 99, 104, 117, 128, 133, 144 16
147 1, 50, 97, 146 4
148 1, 121, 137 3
153 1, 8, 19, 26, 35, 53, 55, 64, 89, 98, 100, 118, 127, 134, 145, 152 16
154 1, 23, 67 3
155 1, 61, 94, 154 4
159 1, 52, 107, 158 4
161 1, 22, 139, 160 4
165 1, 23, 32, 34, 43, 56, 67, 76, 89, 98, 109, 122, 131, 133, 142, 164 16
169 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168 12
171 1, 37, 134, 170 4
172 1, 49, 165 3
175 1, 24, 26, 51, 74, 76, 99, 101, 124, 149, 151, 174 12
176 1, 49, 81, 97, 113 5
177 1, 58, 119, 176 4
183 1, 62, 121, 182 4
185 1, 6, 31, 36, 38, 43, 68, 73, 112, 117, 142, 147, 149, 154, 179, 184 16
186 1, 97, 109, 157, 163 5
187 1, 67, 120, 186 4
189 1, 55, 134, 188 4
190 1, 11, 61, 81, 101, 111, 121, 131, 161 9
195 1, 14, 64, 79, 116, 131, 181, 194 8
196 1, 165, 177 3

For more information (n = 201 to 5000), see b:de:Pseudoprimzahlen: Tabelle Pseudoprimzahlen (15 - 4999) (Table of pseudoprimes 16–4999). Unlike the list above, that page excludes the bases 1 and n−1. When p is a prime, p2 is a Fermat pseudoprime to base b if and only if p is a Wieferich prime to base b. For example, 10932 = 1194649 is a Fermat pseudoprime to base 2, and 112 = 121 is a Fermat pseudoprime to base 3.

The number of the values of b for n are (For n prime, the number of the values of b must be n − 1, since all b satisfy the Fermat little theorem)

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, ... (sequence A063994 in the OEIS)

The least base b > 1 which n is a pseudoprime to base b (or prime number) are

2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, ... (sequence A105222 in the OEIS)

The number of the values of b for a given n must divide (n), or A000010(n) = 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, ... The quotient can be any natural number, and the quotient = 1 if and only if n is a prime or a Carmichael number (561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, ... A002997) The quotient = 2 if and only if n is in the sequence: 4, 6, 15, 91, 703, 1891, 2701, 11305, 12403, 13981, 18721, ... A191311.)

The least numbers which are pseudoprime to k values of b are (or 0 if no such number exists)

1, 3, 28, 5, 66, 7, 232, 45, 190, 11, 276, 13, 1106, 0, 286, 17, 1854, 19, 3820, 891, 2752, 23, 1128, 595, 2046, 0, 532, 29, 1770, 31, 9952, 425, 1288, 0, 2486, 37, 8474, 0, 742, 41, 3486, 43, 7612, 5589, 2356, 47, 13584, 325, 9850, 0, ... (sequence A064234 in the OEIS) (if and only if k is even and not totient of squarefree number, then the kth term of this sequence is 0.)

Weak pseudoprimes

[edit]

A composite number n which satisfies is called a weak pseudoprime to base b. For any given base b, all Fermat pseudoprimes are weak pseudoprimes, and all weak pseudoprimes coprime to b are Fermat pseudoprimes. However, this definition also permits some pseudoprimes which are not coprime to b.[10] For example, the smallest even weak pseudoprime to base 2 is 161038 (see OEISA006935).

The least weak pseudoprime to bases b = 1, 2, ... are:

4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 38, 6, 4, 4, 6, 6, 4, 4, 6, 46, 4, 4, 10, ... OEISA000790

Carmichael numbers are weak pseudoprimes to all bases, thus all terms in this list are less than or equal to the smallest Carmichael number, 561. Except for 561 = 3⋅11⋅17, only semiprimes can occur in the above sequence. Not all semiprimes less than 561 occur; a semiprime pq (pq) less than 561 occurs in the above sequences if and only if p − 1 divides q − 1 (see OEISA108574). The least Fermat pseudoprime to base b (also not necessary exceeding b) (OEISA090086) is usually semiprime, but not always; the first counterexample is A090086(648) = 385 = 5 × 7 × 11.

If we require n > b, the least weak pseudoprimes (for b = 1, 2, ...) are:

4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 51, ... OEISA239293

Euler–Jacobi pseudoprimes

[edit]

Another approach is to use more refined notions of pseudoprimality, e.g. strong pseudoprimes or Euler–Jacobi pseudoprimes, for which there are no analogues of Carmichael numbers. This leads to probabilistic algorithms such as the Solovay–Strassen primality test, the Baillie–PSW primality test, and the Miller–Rabin primality test, which produce what are known as industrial-grade primes. Industrial-grade primes are integers for which primality has not been "certified" (i.e. rigorously proven), but have undergone a test such as the Miller–Rabin test which has nonzero, but arbitrarily low, probability of failure.

Applications

[edit]

The rarity of such pseudoprimes has important practical implications. For example, public-key cryptography algorithms such as RSA require the ability to quickly find large primes. The usual algorithm to generate prime numbers is to generate random odd numbers and test them for primality. However, deterministic primality tests are slow. If the user is willing to tolerate an arbitrarily small chance that the number found is not a prime number but a pseudoprime, it is possible to use the much faster and simpler Fermat primality test.

References

[edit]
  1. ^ a b Samuel S. Wagstaff Jr. (2013). The Joy of Factoring. Providence, RI: American Mathematical Society. ISBN 978-1-4704-1048-3.
  2. ^ a b Desmedt, Yvo (2010). "Encryption Schemes". In Atallah, Mikhail J.; Blanton, Marina (eds.). Algorithms and theory of computation handbook: Special topics and techniques. CRC Press. pp. 10–23. ISBN 978-1-58488-820-8.
  3. ^ Paulo Ribenboim (1996). The New Book of Prime Number Records. New York: Springer-Verlag. p. 108. ISBN 0-387-94457-5.
  4. ^ Hamahata, Yoshinori; Kokubun, Y. (2007). "Cipolla Pseudoprimes" (PDF). Journal of Integer Sequences. 10 (8).
  5. ^ a b Pomerance, Carl; Selfridge, John L.; Wagstaff, Samuel S. Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7. Archived (PDF) from the original on 2005-03-04.
  6. ^ Alford, W. R.; Granville, Andrew; Pomerance, Carl (1994). "There are Infinitely Many Carmichael Numbers" (PDF). Annals of Mathematics. 140 (3): 703–722. doi:10.2307/2118576. JSTOR 2118576. Archived (PDF) from the original on 2005-03-04.
  7. ^ Kim, Su Hee; Pomerance, Carl (1989). "The Probability that a Random Probable Prime is Composite". Mathematics of Computation. 53 (188): 721–741. doi:10.2307/2008733. JSTOR 2008733.
  8. ^ Sierpinski, W. (1988-02-15), "Chapter V.7", in Ed. A. Schinzel (ed.), Elementary Theory of Numbers, North-Holland Mathematical Library (2 Sub ed.), Amsterdam: North Holland, p. 232, ISBN 9780444866622
  9. ^ a b Robert Baillie; Samuel S. Wagstaff Jr. (October 1980). "Lucas Pseudoprimes" (PDF). Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. MR 0583518. Archived (PDF) from the original on 2006-09-06.
  10. ^ Michon, Gérard P. (19 November 2003). "Pseudo-primes, Weak Pseudoprimes, Strong Pseudoprimes, Primality". Numericana. Retrieved 21 April 2018.
[edit]