iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://en.wikipedia.org/wiki/End_(category_theory)
End (category theory) - Wikipedia Jump to content

End (category theory)

From Wikipedia, the free encyclopedia

In category theory, an end of a functor is a universal dinatural transformation from an object e of X to S.[1]

More explicitly, this is a pair , where e is an object of X and is an extranatural transformation such that for every extranatural transformation there exists a unique morphism of X with for every object a of C.

By abuse of language the object e is often called the end of the functor S (forgetting ) and is written

Characterization as limit: If X is complete and C is small, the end can be described as the equalizer in the diagram

where the first morphism being equalized is induced by and the second is induced by .

Coend

[edit]

The definition of the coend of a functor is the dual of the definition of an end.

Thus, a coend of S consists of a pair , where d is an object of X and is an extranatural transformation, such that for every extranatural transformation there exists a unique morphism of X with for every object a of C.

The coend d of the functor S is written

Characterization as colimit: Dually, if X is cocomplete and C is small, then the coend can be described as the coequalizer in the diagram

Examples

[edit]
  • Natural transformations:

    Suppose we have functors then

    .

    In this case, the category of sets is complete, so we need only form the equalizer and in this case

    the natural transformations from to . Intuitively, a natural transformation from to is a morphism from to for every in the category with compatibility conditions. Looking at the equalizer diagram defining the end makes the equivalence clear.

  • Geometric realizations:

    Let be a simplicial set. That is, is a functor . The discrete topology gives a functor , where is the category of topological spaces. Moreover, there is a map sending the object of to the standard -simplex inside . Finally there is a functor that takes the product of two topological spaces.

    Define to be the composition of this product functor with . The coend of is the geometric realization of .

Notes

[edit]

References

[edit]
  • Mac Lane, Saunders (2013). Categories For the Working Mathematician. Springer Science & Business Media. pp. 222–226.
  • Loregian, Fosco (2015). "This is the (co)end, my only (co)friend". arXiv:1501.02503 [math.CT].
[edit]