iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://en.wikipedia.org/wiki/Adolfo_del_Campo
Adolfo del Campo - Wikipedia Jump to content

Adolfo del Campo

From Wikipedia, the free encyclopedia

Adolfo del Campo
Born1981 (age 42–43)
Alma materUniversity of Basque Country
Known forShortcuts to adiabaticity
Kibble-Zurek mechanism
Quantum speed limit
AwardsJ. R. Oppenheimer Fellowship (2011)
Scientific career
FieldsQuantum Physics
Institutions

Adolfo del Campo (born 1981, Bilbao, Spain) is a Spanish physicist and a professor of physics at the University of Luxembourg.[1] He is best known for his work in quantum control and theoretical physics. He is notable as one of the pioneers of shortcuts to adiabaticity. He was elected as a Fellow of the American Physical Society in 2023.[2]

Education

[edit]

Del Campo was educated at the University of the Basque Country, The University of Texas at Austin, and The University of North Carolina at Chapel Hill. He completed his Ph.D. at the University of the Basque Country in 2008. He was a postdoctoral research associate at Imperial College London. He was awarded a Distinguished J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory.[3]

Career

[edit]

In 2014, he became an associate professor at the University of Massachusetts.[4] He was an Ikerbasque Research Professor at the Donostia International Physics Center (2019-2020) and is a full professor at the University of Luxembourg. He has held visiting positions at several universities, including the National Autonomous University of Mexico, the University of Kyoto, Los Alamos National Laboratory, and Institut Henri Poincaré. During his career, del Campo has published over 100 peer-reviewed papers. He has contributed to developing shortcuts to adiabaticity, quantum speed limits, quantum heat engines and the Kibble–Zurek mechanism.

Research

[edit]

Del Campo has contributed significantly to the development of shortcuts to adiabaticity, which are techniques designed to efficiently prepare quantum states.[5][6] His work has extended their application to encompass many-body quantum systems with continuous variables [7][8][9] and spin degrees of freedom.[10][11] These extensions have led to novel quantum algorithms combining the quantum circuit model of quantum computation with shortcuts to adiabaticity.

In partnership with Muga and Ruschhaupt, Del Campo edited the comprehensive volume titled "Time in Quantum Mechanics".[12] He has generalized the time-energy uncertainty relation by introducing quantum speed limits in open quantum systems[13] and classical systems.[14][15][16]

Working on quantum thermodynamics, Del Campo proposed using shortcuts to adiabaticity to enhance the performance of quantum heat engines and bounding the output power by means of quantum speed limits.[17][18] This approach motivated experiments demonstrating the suppression of quantum friction[19] and the realization of superadiabatic quantum engines. In collaboration with Jaramillo and Beau, Dr. Del Campo conducted pioneering theoretical research showcasing the quantum supremacy of many-body thermodynamic devices, establishing the superior performance of heat engines employing many-body working substances compared to their classical counterparts.[20]

Del Campo's contributions to the field of phase transitions expanded upon the Kibble–Zurek mechanism, which explains the creation of topological defects upon crossing critical points in both classical and quantum systems. Del Campo, in collaboration with Kibble and Zurek, introduced the Inhomogeneous Kibble-Zurek mechanism, a concept that involves spatially local driving to minimize defect formation during phase transitions.[21] This prediction has undergone experimental validation using various systems, including trapped ions[22][23] and ultracold gases. Additionally, Del Campo's work has uncovered universal features beyond the traditional Kibble-Zurek mechanism. He predicted the fluctuations in the number of topological defects to be universal,[24][25] with confirmation achieved through experiments using D-Wave devices.[26][27]

Awards

[edit]

See also

[edit]

References

[edit]
  1. ^ "University of Luxembourg People - Adolfo Del Campo". wwwen.uni.lu/research/fstm/dphyms/. 15 December 2023.
  2. ^ "APS Fellow Archive".
  3. ^ "LANL Distinguished Postdoc Fellows" (PDF).
  4. ^ "University of Massachusetts Boston Faculty & Staff".
  5. ^ Chen, Xi; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guéry-Odelin, D.; Muga, J. G. (11 February 2010). "Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity". Physical Review Letters. 104 (6): 063002. arXiv:0910.0709. Bibcode:2010PhRvL.104f3002C. doi:10.1103/PhysRevLett.104.063002. PMID 20366818. S2CID 1372315.
  6. ^ Torrontegui, Erik; Ibáñez, Sara; Martínez-Garaot, Sofia; Modugno, Michele; del Campo, Adolfo; Guéry-Odelin, David; Ruschhaupt, Andreas; Chen, Xi; Muga, Juan Gonzalo (1 January 2013), "Shortcuts to Adiabaticity", in Arimondo, Ennio; Berman, Paul R.; Lin, Chun C. (eds.), Chapter 2 - Shortcuts to Adiabaticity, Advances in Atomic, Molecular, and Optical Physics, vol. 62, Academic Press, pp. 117–169, arXiv:1212.6343, doi:10.1016/b978-0-12-408090-4.00002-5, ISBN 9780124080904, S2CID 118553513, retrieved 3 October 2023
  7. ^ del Campo, A. (26 September 2011). "Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope". Physical Review A. 84 (3): 031606. arXiv:1103.0714. Bibcode:2011PhRvA..84c1606D. doi:10.1103/PhysRevA.84.031606. S2CID 119291327.
  8. ^ Campo, A. del; Boshier, M. G. (11 September 2012). "Shortcuts to adiabaticity in a time-dependent box". Scientific Reports. 2 (1): 648. arXiv:1201.6627. Bibcode:2012NatSR...2E.648D. doi:10.1038/srep00648. ISSN 2045-2322. PMC 3438466. PMID 22970340.
  9. ^ del Campo, Adolfo (3 September 2013). "Shortcuts to Adiabaticity by Counterdiabatic Driving". Physical Review Letters. 111 (10): 100502. arXiv:1306.0410. Bibcode:2013PhRvL.111j0502D. doi:10.1103/PhysRevLett.111.100502. PMID 25166641. S2CID 28259265.
  10. ^ del Campo, Adolfo; Rams, Marek M.; Zurek, Wojciech H. (13 September 2012). "Assisted Finite-Rate Adiabatic Passage Across a Quantum Critical Point: Exact Solution for the Quantum Ising Model". Physical Review Letters. 109 (11): 115703. arXiv:1206.2670. Bibcode:2012PhRvL.109k5703D. doi:10.1103/PhysRevLett.109.115703. PMID 23005647.
  11. ^ Saberi, Hamed; Opatrný, Tomáš; Mølmer, Klaus; del Campo, Adolfo (1 December 2014). "Adiabatic tracking of quantum many-body dynamics". Physical Review A. 90 (6): 060301. arXiv:1408.0524. Bibcode:2014PhRvA..90f0301S. doi:10.1103/PhysRevA.90.060301.
  12. ^ Muga, Gonzalo; Ruschhaupt, Andreas; Campo, Adolfo, eds. (2009). Time in Quantum Mechanics II. Lecture Notes in Physics. Vol. 789. doi:10.1007/978-3-642-03174-8. ISBN 978-3-642-03173-1. ISSN 0075-8450.
  13. ^ del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F. (30 January 2013). "Quantum Speed Limits in Open System Dynamics". Physical Review Letters. 110 (5): 050403. arXiv:1209.1737. Bibcode:2013PhRvL.110e0403D. doi:10.1103/PhysRevLett.110.050403. PMID 23414008.
  14. ^ Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A. (12 February 2018). "Quantum Speed Limits across the Quantum-to-Classical Transition". Physical Review Letters. 120 (7): 070401. arXiv:1710.07335. Bibcode:2018PhRvL.120g0401S. doi:10.1103/PhysRevLett.120.070401. PMID 29542956.
  15. ^ Nicholson, Schuyler B.; García-Pintos, Luis Pedro; del Campo, Adolfo; Green, Jason R. (December 2020). "Time–information uncertainty relations in thermodynamics". Nature Physics. 16 (12): 1211–1215. arXiv:2001.05418. Bibcode:2020NatPh..16.1211N. doi:10.1038/s41567-020-0981-y. ISSN 1745-2481. S2CID 210718709.
  16. ^ García-Pintos, Luis Pedro; Nicholson, Schuyler B.; Green, Jason R.; del Campo, Adolfo; Gorshkov, Alexey V. (28 February 2022). "Unifying Quantum and Classical Speed Limits on Observables". Physical Review X. 12 (1): 011038. arXiv:2108.04261. Bibcode:2022PhRvX..12a1038G. doi:10.1103/PhysRevX.12.011038.
  17. ^ Campo, A. del; Goold, J.; Paternostro, M. (28 August 2014). "More bang for your buck: Super-adiabatic quantum engines". Scientific Reports. 4 (1): 6208. Bibcode:2014NatSR...4E6208C. doi:10.1038/srep06208. ISSN 2045-2322. PMC 4147366. PMID 25163421.
  18. ^ Beau, M.; Jaramillo, J.; del Campo, A. (30 April 2016). "Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity". Entropy. 18 (5): 168. arXiv:1603.06019. Bibcode:2016Entrp..18..168B. doi:10.3390/e18050168. ISSN 1099-4300.
  19. ^ Deng, Shujin; Chenu, Aurélia; Diao, Pengpeng; Li, Fang; Yu, Shi; Coulamy, Ivan; del Campo, Adolfo; Wu, Haibin (6 April 2018). "Superadiabatic quantum friction suppression in finite-time thermodynamics". Science Advances. 4 (4): eaar5909. arXiv:1711.00650. Bibcode:2018SciA....4.5909D. doi:10.1126/sciadv.aar5909. ISSN 2375-2548. PMC 5922798. PMID 29719865.
  20. ^ Jaramillo, J; Beau, M; Campo, A del (26 July 2016). "Quantum supremacy of many-particle thermal machines". New Journal of Physics. 18 (7): 075019. arXiv:1510.04633. Bibcode:2016NJPh...18g5019J. doi:10.1088/1367-2630/18/7/075019. ISSN 1367-2630.
  21. ^ del Campo, A; Kibble, T W B; Zurek, W H (9 October 2013). "Causality and non-equilibrium second-order phase transitions in inhomogeneous systems". Journal of Physics: Condensed Matter. 25 (40): 404210. arXiv:1302.3648. Bibcode:2013JPCM...25N4210D. doi:10.1088/0953-8984/25/40/404210. ISSN 0953-8984. PMID 24025443. S2CID 45215226.
  22. ^ Ulm, S.; Roßnagel, J.; Jacob, G.; Degünther, C.; Dawkins, S. T.; Poschinger, U. G.; Nigmatullin, R.; Retzker, A.; Plenio, M. B.; Schmidt-Kaler, F.; Singer, K. (7 August 2013). "Observation of the Kibble–Zurek scaling law for defect formation in ion crystals". Nature Communications. 4 (1): 2290. arXiv:1302.5343. Bibcode:2013NatCo...4.2290U. doi:10.1038/ncomms3290. ISSN 2041-1723. PMID 23921517.
  23. ^ Pyka, K.; Keller, J.; Partner, H. L.; Nigmatullin, R.; Burgermeister, T.; Meier, D. M.; Kuhlmann, K.; Retzker, A.; Plenio, M. B.; Zurek, W. H.; del Campo, A.; Mehlstäubler, T. E. (7 August 2013). "Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals". Nature Communications. 4 (1): 2291. arXiv:1211.7005. Bibcode:2013NatCo...4.2291P. doi:10.1038/ncomms3291. ISSN 2041-1723. PMID 23921564.
  24. ^ del Campo, Adolfo (14 November 2018). "Universal Statistics of Topological Defects Formed in a Quantum Phase Transition". Physical Review Letters. 121 (20): 200601. arXiv:1806.10646. Bibcode:2018PhRvL.121t0601D. doi:10.1103/PhysRevLett.121.200601. PMID 30500249. S2CID 51736461.
  25. ^ Gómez-Ruiz, Fernando J.; Mayo, Jack J.; del Campo, Adolfo (17 June 2020). "Full Counting Statistics of Topological Defects after Crossing a Phase Transition". Physical Review Letters. 124 (24): 240602. arXiv:1912.04679. Bibcode:2020PhRvL.124x0602G. doi:10.1103/PhysRevLett.124.240602. PMID 32639801. S2CID 209140380.
  26. ^ Bando, Yuki; Susa, Yuki; Oshiyama, Hiroki; Shibata, Naokazu; Ohzeki, Masayuki; Gómez-Ruiz, Fernando Javier; Lidar, Daniel A.; Suzuki, Sei; del Campo, Adolfo; Nishimori, Hidetoshi (8 September 2020). "Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond". Physical Review Research. 2 (3): 033369. arXiv:2001.11637. Bibcode:2020PhRvR...2c3369B. doi:10.1103/PhysRevResearch.2.033369.
  27. ^ King, Andrew D.; Suzuki, Sei; Raymond, Jack; Zucca, Alex; Lanting, Trevor; Altomare, Fabio; Berkley, Andrew J.; Ejtemaee, Sara; Hoskinson, Emile; Huang, Shuiyuan; Ladizinsky, Eric; MacDonald, Allison J. R.; Marsden, Gaelen; Oh, Travis; Poulin-Lamarre, Gabriel (November 2022). "Coherent quantum annealing in a programmable 2,000 qubit Ising chain". Nature Physics. 18 (11): 1324–1328. arXiv:2202.05847. Bibcode:2022NatPh..18.1324K. doi:10.1038/s41567-022-01741-6. ISSN 1745-2481. S2CID 246823045.
  28. ^ "Leon Heller PDPA Publication Award Winners" (PDF).
  29. ^ "2023 Fellows". APS Fellow Archive. American Physical Society. Retrieved 19 October 2023.
[edit]

Selected bibliography

[edit]