iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dx.doi.org/10.1557/PROC-82-175
Accurate Interatomic Potentials for Ni, Al and Ni3Al | MRS Online Proceedings Library Skip to main content
Log in

Accurate Interatomic Potentials for Ni, Al and Ni3Al

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

To obtain meaningful results from atomistic simulations of materials, the interatomic potentials must be capable of reproducing the thermodynamic properties of the system of interest. Pairwise potentials have known deficiencies that make them unsuitable for quantitative investigations of defective regions such as crack tips and free surfaces. Daw and Baskes [Phys. Rev. B 29, 6443 (1984)] have shown that including a local “volume” term for each atom gives the necessary many-body character without the severe computational dependence of explicit n-body potential terms. Using a similar approach, we have fit an interatomic potential to the Ni3Al alloy system. This potential can treat diatomic Ni2, diatomic Al2, fcc Ni, fcc Al and L12 Ni3Al on an equal footing. Details of the fitting procedure are presented, along with the calculation of some properties not included in the fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Johnson and W. D. Wilson, in Interatomic Potentials and Simulation of Lattice Defects, edited by P.C. Gehlen, J.R. Beeler, and R.I. Jaffee (Plenum, New York, 1971).

    Google Scholar 

  2. T. Halichioglu and G.M. Pound, Phys. Status Solidi A 30, 619 (1975).

    Article  Google Scholar 

  3. W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966).

    Google Scholar 

  4. M.S. Daw and M.I. Baskes, Phys. Rev B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  5. S.M. Foiles, M.I. Baskes and M.S. Daw, Phys. Rev. B 33, 7983 (1986), and references therein.

    Article  CAS  Google Scholar 

  6. A.F. Voter, to be published.

  7. S.P. Chen, A.F. Voter and D.J. Srolovitz, Scripta Met. 20, 1389 (1986); Proceedings of the 1986 Materials Research Society Conference, Boston, 1986, Symposium H.

    Article  CAS  Google Scholar 

  8. S.P. Chen, A.F. Voter, and D.J. Srolovitz, Phys. Rev. Lett., 57, 1308 (1986); S.P. Chen, A.F. Voter and D. J. Srolovitz, these proceedings, page.

    Article  CAS  Google Scholar 

  9. S. M. Foiles and M. S. Daw, J. Mater. Res., in press.

  10. J. Eridon, L. Rehn and G. Was, in press for publication in Nucl. Instr. Methods B, April 1987.

  11. J.H. Rose, J.R. Smith, F. Guinea and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Article  CAS  Google Scholar 

  12. S.M. Foiles, Phys. Rev. B 32, 7685 (1985).

    Article  CAS  Google Scholar 

  13. J.A. Nelder and R. Mead, Comp. J. 7, 308 (1965).

    Article  Google Scholar 

  14. C. Kittel, Introduction to Solid State Physics. 5th ed. (Wiley, New York, 1976).

    Google Scholar 

  15. Metal Reference Book, 5th ed., edited by C.J. Smith (Butterworths, London, 1976).

  16. Handbook of Chemistry and Physics, edited by R.C. Weast (CRC, Boca Raton, FL, 1984).

  17. G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, Massachusetts, 1977).

    Google Scholar 

  18. R. W. Ballufi, J. Nucl. Materials 69, 240 (1978).

    Article  Google Scholar 

  19. J.S. Koehler, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North Holland, Amsterdam, 1970), p. 175.

    Google Scholar 

  20. J.O. Noell, M.D. Newton, P.J. Hay, R.L. Martin, and F.W. Bobrowicz, J. Chem. Phys. 73, 2360 (1980).

    Article  CAS  Google Scholar 

  21. K.P. Huber and G. Hertzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  22. S. Stassis, Phys. Stat. Sod. A 64, 335 (1981).

    Article  Google Scholar 

  23. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, Ohio, 1973).

    Google Scholar 

  24. M.H. Yoo, privatae communication. Values from Ref. 20 were scaled to T = OK according to values in K. Ono and R. Stern, Trans. AIME 245, 171 (1969).

    Google Scholar 

  25. T.-M. Wang, M. Shimotomai, and M. Doyama, J. Phys. F 14. 37 (1984).

    Article  CAS  Google Scholar 

  26. P. Veyssiere, J. Douin, and P. Beauchamp. Phil. Mag. A 51, 469 (1985).

    Article  CAS  Google Scholar 

  27. W. Wycisk and M. Feller-Kniepmeier, J. Nuc. Mater. 69&70, 616 (1978).

    Article  Google Scholar 

  28. W. Schule and R. Scholz, in Point Defects and Defect Interactions in Metals, edited by J. -I. Takamura, M. Doyama and M. Kiritani (University of Tokyo Press/North Holland, Amsterdam, 1982), p257.

    Google Scholar 

  29. L. E. Murr, Interfacial Phenomena in Metals and Alloys (Addison Wesley, Reading, MA, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voter, A.F., Chen, S.P. Accurate Interatomic Potentials for Ni, Al and Ni3Al. MRS Online Proceedings Library 82, 175–180 (1986). https://doi.org/10.1557/PROC-82-175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-82-175

Navigation