For infrequent-event systems, transition state theory (TST) is a powerful approach for overcoming the time scale limitations of the molecular dynamics (MD) simulation method, provided one knows the locations of the potential-energy basins (states) and the TST dividing surfaces (or the saddle points) between them. Often, however, the states to which the system will evolve are not known in advance. We present a new, TST-based method for extending the MD time scale that does not require advanced knowledge of the states of the system or the transition states that separate them. The potential is augmented by a bias potential, designed to raise the energy in regions other than at the dividing surfaces. State to state evolution on the biased potential occurs in the proper sequence, but at an accelerated rate with a nonlinear time scale. Time is no longer an independent variable, but becomes a statistically estimated property that converges to the exact result at long times. The long-time dynamical behavior is exact if there are no TST-violating correlated dynamical events, and appears to be a good approximation even when this condition is not met. We show that for strongly coupled (i.e., solid state) systems, appropriate bias potentials can be constructed from properties of the Hessian matrix. This new “hyper-MD” method is demonstrated on two model potentials and for the diffusion of a Ni atom on a Ni(100) terrace for a duration of 20 μs.

1.
R.
Marcelin
,
Ann. Phys.
3
,
120
(
1915
).
2.
E.
Wigner
,
Z. Phys. Chem. B
19
,
203
(
1932
).
3.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
4.
J.
Horiuti
,
Bull. Chem. Soc. Jpn.
13
,
210
(
1938
).
5.
D. G.
Truhlar
and
B. C.
Garrett
,
Acc. Chem. Res.
13
,
440
(
1980
).
6.
P.
Hanggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
7.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
);
J. A.
Montgomery
, Jr.
,
D.
Chandler
, and
B. J.
Berne
,
J. Chem. Phys.
70
,
4056
(
1979
).,
J. Chem. Phys.
8.
A. F.
Voter
and
J. D.
Doll
,
J. Chem. Phys.
82
,
80
(
1985
).
9.
For an excellent review of dynamical corrections to TST, see
J. B.
Anderson
,
Adv. Chem. Phys.
91
,
381
(
1995
).
10.
J. C.
Keck
,
Discuss. Faraday Soc.
33
,
173
(
1962
).
11.
C. H. Bennett, in Diffusion in Solids: Recent Developments, edited by J. J. Burton and A. S. Nowick (Academic, New York, 1975), p. 73.
12.
G. H.
Vineyard
,
J. Phys. Chem. Solids
3
,
121
(
1957
).
13.
R. E.
Kunz
and
R. S.
Berry
,
J. Chem. Phys.
103
,
1904
(
1995
).
14.
P. J.
Feibelman
,
Phys. Rev. Lett.
65
,
729
(
1990
).
15.
G. L.
Kellogg
and
P. J.
Feibelman
,
Phys. Rev. Lett.
64
,
3143
(
1990
).
16.
C.
Chen
and
T. T.
Tsong
,
Phys. Rev. Lett.
64
,
3147
(
1990
).
17.
M.
Villarba
and
H.
Jónsson
,
Phys. Rev. B
49
,
2208
(
1994
).
18.
A. F.
Voter
,
Phys. Rev. B
34
,
6819
(
1986
).
19.
J. T. Hynes, in The Theory of Chemical Reaction Dynamics, edited by M. Baer (Chemical Rubber, Boca Raton, 1985), Vol. IV, p. 171.
20.
N.
Gro/nbech-Jensen
and
S.
Doniach
,
J. Comp. Chem.
15
,
997
(
1994
).
21.
A. M.
Mathiowetz
,
A.
Jain
,
N.
Karasawa
, and
W. A.
Goddard
,
Proteins-Structure Function and Genetics
20
,
227
(
1994
).
22.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
(
1996
).
23.
P. V.
Kumar
,
J. S.
Raut
,
S. J.
Warakomski
, and
K. A.
Fichthorn
,
J. Chem. Phys.
105
,
686
(
1996
).
24.
M. E.
Tuckerman
,
G. J.
Martyna
, and
B. J.
Berne
,
J. Chem. Phys.
93
,
1287
(
1990
).
25.
J. D.
Doll
,
J. Chem. Phys.
73
,
2760
(
1980
).
26.
E. A.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
27.
J. P. Valleau and S. G. Whittington, in Modern Theoretical Chemistry, edited by B. J. Berne (Plenum, New York, 1977), Vol. 5, p. 137.
28.
J. P. Valleau and G. M. Torrie, in Modern Theoretical Chemistry, edited by B. J. Berne (Plenum, New York, 1977), Vol. 5, p. 169.
29.
C. H. Bennett, in Algorithms for Chemical Computation, edited by R. Ě. Christofferson (American Chemical Society, Washington, D. C. 1977), p. 63.
30.
B. J.
Berne
,
M.
Borkovec
, and
J. E.
Straub
,
J. Phys. Chem.
92
,
3711
(
1988
).
31.
A. F.
Voter
and
J. D.
Doll
,
J. Chem. Phys.
80
,
5814
(
1984
).
32.
This trajectory should be coupled to a heat bath, at least weakly, to provide proper canonical, rather than microcanonical, behavior.
33.
The reflecting barrier is for this thought experiment only; in applications of the hyperdynamics method, no such barriers are constructed.
34.
E. M.
Sevick
,
A. T.
Bell
, and
D. N.
Theodorou
,
J. Chem. Phys.
98
,
3196
(
1993
).
35.
M.
Toller
,
G.
Jacucci
,
G.
DeLorenzi
, and
C. P.
Flynn
,
Phys. Rev. B
32
,
2082
(
1985
).
36.
A. F. Voter (unpublished).
37.
B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, 1980).
38.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
1
(
1943
).
39.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford, New York, 1987), p. 263, Eq. (9.24).
40.
With this value of α, the dynamics are well into the underdamped regime; the angular normal mode frequencies at the minimum are 6.28 and 7.45.
41.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
42.
For example, in the direct-MD simulation at kBT = 0.2, examination of the successive crossing times showed 34 friction-induced recrossings events (subsided by t = 1), 95 bounce-back recrossing events (some of these on the second and third vibration), and 35 forward multiple jump events, all subsided by t = 5, out of a total of 1011 TST-surface crossings with an average escape time of τesc = 9090.
43.
A. F.
Voter
,
J. Chem. Phys.
82
,
1890
(
1985
).
44.
A. F.
Voter
,
Phys. Rev. Lett.
63
,
167
(
1989
).
45.
A. F.
Voter
,
J. D.
Doll
, and
J. M.
Cohen
,
J. Chem. Phys.
90
,
2045
(
1989
).
46.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
1
(
1943
), Eq. (507).
47.
Alternatively, D could be computed exactly for this potential using TST and dynamical corrections for each of the saddle planes, so that the kinetic Monte Carlo simulation would be based on the correct rate constants for each type of escape event (single jump to left, single jump to right, double jump to left, etc. ) out of each unique minimum.
48.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
49.
A. F. Voter, in Intermetallic Compounds: Principles and Practice, edited by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1995), Vol. 1, p. 77.
50.
M. S.
Daw
,
S. M.
Foiles
, and
M. I.
Baskes
,
Mater. Sci. Rep.
9
,
251
(
1993
).
51.
A. F.
Voter
and
S. P.
Chen
.
Mater. Res. Soc. Symp. Proc.
82
,
175
(
1987
).
52.
C. L.
Liu
,
J. M.
Cohen
,
J. B.
Adams
, and
A. F.
Voter
,
Surf. Sci.
253
,
334
(
1991
).
53.
A commonly used approximation to the full harmonic treatment, in which the frequency factor is replaced by the frequency of the vibrational mode at the minimum corresponding to motion towards the saddle point (when such a mode can be uniquely identified), is not as accurate. The x-direction frequency of the adatom with all other atoms held fixed (4.79×1012s−1) is 41% lower than the Vineyard frequency. The frequency of the x1-predominant eigenmode of the full 27-dimensional system (3.16×1012s−1) is 61% low.
54.
M. J. Davis and R. T. Skodje, in Advances in Classical Trajectory Methods, (JAI, New York, 1992), Vol. I, p. 77.
55.
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1987
);
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
);
G. K.
Schenter
,
M.
Messina
, and
B. C.
Garrett
,
J. Chem. Phys.
99
,
1674
(
1993
).,
J. Chem. Phys.
This content is only available via PDF.
You do not currently have access to this content.