This work deals with nonautonomous chaotic circuits and, in particular, with the experimental characterization of the synchronization properties of two simple nonautonomous circuits. Two single-transistor chaotic circuits, which are among the simplest chaotic oscillators, are investigated. We studied synchronization of these circuits and found that the most appropriate technique to synchronize two single-transistor chaotic circuits is that based on the design of an inverse circuit.
REFERENCES
1.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
(1963
).2.
L. O.
Chua
, C. W.
Wu
, A.
Huang
, and G.-Q.
Zhong
, “A universal circuit for studying and generating chaos. I. Routes to chaos
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
40
, 732
(1993
).3.
L. O.
Chua
, C. W.
Wu
, A.
Huang
, and G.-Q.
Zhong
, “A universal circuit for studying and generating chaos. II. Strange attractors
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
40
, 745
(1993
).4.
R. N.
Madan
, Chua’s Circuit: A Paradigm for Chaos
, in World Scientific Series on Nonlinear Sciences, Series B
, Vol. 1
(World Scientific
, Singapore
, 1993
).5.
W. C. Y.
Chan
and C. K.
Tse
, “Study of bifurcations in current programmed DC/DC boost converters: from quasiperiodicity to period-doubling
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
44
, 1129
(1997
).6.
C. K.
Tse
and M.
Di Bernardo
, “Complex behavior in switching power converters
,” Proc. IEEE
90
, 768
(2002
).7.
Chaos in Circuits and Systems
, edited by G.
Chen
and T.
Ueta
, in World Scientific Series on Nonlinear Science, Series B
, Vol. 11
(World Scientific
, Singapore
, 2002
).8.
F. T.
Arecchi
, L.
Fortuna
, M.
Frasca
, R.
Meucci
, and G.
Sciuto
, “A programmable electronic circuit for modelling laser dynamics
,” Chaos
15
, 043104
(2005
).9.
M.
Hulub
, M.
Frasca
, L.
Fortuna
, and P.
Arena
, “Implementation and synchronization of a grid scroll attractor with analog programmable devices
,” Chaos
16
, 013121
(2006
).10.
T.
Saito
, “Reality of chaos in four-dimensional hysteretic circuits
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
38
, 1517
(1991
).11.
K.
Mitsubori
and T.
Saito
, “A four-dimensional plus hysteresis chaos generator
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
41
, 782
(1994
).12.
L.
Fortuna
, M.
Frasca
, S.
Graziani
, and S.
Reddiconto
, “A chaotic circuit with ferroelectric nonlinearity
,” Nonlinear Dyn.
44
, 55
(2006
).13.
E.
Lindberg
, K.
Murali
, and A.
Tamasevicius
, “The smallest transistor-based nonautonomous chaotic circuit
,” IEEE Trans. Circuits Syst., II: Analog Digital Signal Process.
52
, 661
(2005
).14.
L.
Pecora
and T. L.
Carroll
, “Synchronization in chaotic systems
,” Phys. Rev. Lett.
64
, 821
(1990
).15.
S.
Boccaletti
, J.
Kurths
, G.
Osipov
, D. L.
Valladares
, and C. S.
Zhou
, “The synchronization of chaotic systems
,” Phys. Rep.
366
, 1
(2002
).16.
J. H. B.
Deane
and D. C.
Hamill
, “Instability, subharmonics, and chaos in power electronic systems
,” IEEE Trans. Power Electron.
5
, 260
(1990
).17.
J. H.
B. Deane
and D. C.
Hamill
, “Chaotic behavior in current-mode controlled DC-DC convertor
,” Electron. Lett.
27
), 1172
(1991
).18.
M.
Di Bernardo
, F.
Garofalo
, L.
Glielmo
, and F.
Vasca
, “Switchings, bifurcations and chaos in DC/DC converters
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
45
, 133
(1998
).19.
M.
Hasler
, “Synchronization principles and applications
,” Circuits and Systems Tutorials, ISCAS’94
, London
, 1994
, pp. 314
–327
.© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.