This work deals with nonautonomous chaotic circuits and, in particular, with the experimental characterization of the synchronization properties of two simple nonautonomous circuits. Two single-transistor chaotic circuits, which are among the simplest chaotic oscillators, are investigated. We studied synchronization of these circuits and found that the most appropriate technique to synchronize two single-transistor chaotic circuits is that based on the design of an inverse circuit.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
(
1963
).
2.
L. O.
Chua
,
C. W.
Wu
,
A.
Huang
, and
G.-Q.
Zhong
, “
A universal circuit for studying and generating chaos. I. Routes to chaos
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
40
,
732
(
1993
).
3.
L. O.
Chua
,
C. W.
Wu
,
A.
Huang
, and
G.-Q.
Zhong
, “
A universal circuit for studying and generating chaos. II. Strange attractors
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
40
,
745
(
1993
).
4.
R. N.
Madan
,
Chua’s Circuit: A Paradigm for Chaos
, in
World Scientific Series on Nonlinear Sciences, Series B
, Vol.
1
(
World Scientific
,
Singapore
,
1993
).
5.
W. C. Y.
Chan
and
C. K.
Tse
, “
Study of bifurcations in current programmed DC/DC boost converters: from quasiperiodicity to period-doubling
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
44
,
1129
(
1997
).
6.
C. K.
Tse
and
M.
Di Bernardo
, “
Complex behavior in switching power converters
,”
Proc. IEEE
90
,
768
(
2002
).
7.
Chaos in Circuits and Systems
, edited by
G.
Chen
and
T.
Ueta
, in
World Scientific Series on Nonlinear Science, Series B
, Vol.
11
(
World Scientific
,
Singapore
,
2002
).
8.
F. T.
Arecchi
,
L.
Fortuna
,
M.
Frasca
,
R.
Meucci
, and
G.
Sciuto
, “
A programmable electronic circuit for modelling CO2 laser dynamics
,”
Chaos
15
,
043104
(
2005
).
9.
M.
Hulub
,
M.
Frasca
,
L.
Fortuna
, and
P.
Arena
, “
Implementation and synchronization of a 3×3 grid scroll attractor with analog programmable devices
,”
Chaos
16
,
013121
(
2006
).
10.
T.
Saito
, “
Reality of chaos in four-dimensional hysteretic circuits
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
38
,
1517
(
1991
).
11.
K.
Mitsubori
and
T.
Saito
, “
A four-dimensional plus hysteresis chaos generator
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
41
,
782
(
1994
).
12.
L.
Fortuna
,
M.
Frasca
,
S.
Graziani
, and
S.
Reddiconto
, “
A chaotic circuit with ferroelectric nonlinearity
,”
Nonlinear Dyn.
44
,
55
(
2006
).
13.
E.
Lindberg
,
K.
Murali
, and
A.
Tamasevicius
, “
The smallest transistor-based nonautonomous chaotic circuit
,”
IEEE Trans. Circuits Syst., II: Analog Digital Signal Process.
52
,
661
(
2005
).
14.
L.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
(
1990
).
15.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
(
2002
).
16.
J. H. B.
Deane
and
D. C.
Hamill
, “
Instability, subharmonics, and chaos in power electronic systems
,”
IEEE Trans. Power Electron.
5
,
260
(
1990
).
17.
J. H.
B. Deane
and
D. C.
Hamill
, “
Chaotic behavior in current-mode controlled DC-DC convertor
,”
Electron. Lett.
27
),
1172
(
1991
).
18.
M.
Di Bernardo
,
F.
Garofalo
,
L.
Glielmo
, and
F.
Vasca
, “
Switchings, bifurcations and chaos in DC/DC converters
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
45
,
133
(
1998
).
19.
M.
Hasler
, “
Synchronization principles and applications
,”
Circuits and Systems Tutorials, ISCAS’94
,
London
,
1994
, pp.
314
327
.
You do not currently have access to this content.