iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dx.doi.org/10.1023/A:1005161325181
Standard Solar Composition | Space Science Reviews Skip to main content
Log in

Standard Solar Composition

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review the current status of our knowledge of the chemical composition of the Sun, essentially derived from the analysis of the solar photospheric spectrum. The comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances. They are used to construct a Standard Abundance Distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders, E. and Grevesse, N.: 1989, ‘Abundances of the elements: meteoritic and solar', Geochim. Cosmochim. Acta 53, 197–214.

    Article  ADS  Google Scholar 

  • Anstee, S.D. and O'Mara, B.J.: 1995, ‘Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen', Mon. Not. R. Astron. Soc. 276, 859–866.

    ADS  Google Scholar 

  • Anstee, S.D., O'Mara, B.J. and Ross, J.E.: 1997, ‘A determination of the solar abundance of iron from the strong lines of Fe I', Mon. Not. R. Astron. Soc. 284, 202–212.

    ADS  Google Scholar 

  • Balachandran, S.C. and Bell, R.A.: 1998, ‘The lack of beryllium depletion in the Sun and implications for stellar mixing', Nature, in press.

  • Barklem, P.S. and O'Mara, B.J.: 1997, ‘The broadening of p-d and d-p transitions by collisions with neutral hydrogen atoms', Mon. Not. R. Astron. Soc. 290, 102–106.

    ADS  Google Scholar 

  • Barklem, P.S., O'Mara, B.J. and Ross, J.E.: 1998, ‘The broadening of d-f and f-d transitions by collisions with neutral hydrogen atoms', Mon. Not. R. Astron. Soc., in press.

  • Blöcker, T., Holweger, H., Freytag, B., Herwig, F., Ludwig, H.-G. and Steffen, M.: 1998, ‘Lithium depletion in the Sun: a study of mixing based on hydrodynamical simulations', Space Sci. Rev., this volume.

  • Bochsler, P.: 1998, ‘Structure of the solar wind and compositional differences,', Space Sci. Rev., this volume.

  • Bord, D.J., Cowley, C.R. and Mirijanian, D.: 1998, ‘A re-evaluation of the abundance of lutetium in the Sun', Solar Phys. 178, 221–237.

    Article  ADS  Google Scholar 

  • Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F.: 1957, ‘Synthesis of the elements in stars', Rev. Mod. Phys. 29, 547–650.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W.: 1957, ‘Nuclear reactions in stars and nucleogenesis', Pub. Astr. Soc. Pac. 69, 201–222. (also Chalk River Report CRL-41)

    Article  ADS  Google Scholar 

  • Carlsson, M., Rutten, R.J., Bruls, J.H. and Shchukina, N.G.: 1994, ‘The non-LTE formation of Li I lines in cool stars', A&A 288, 860–883.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 1998, ‘Standard model and composition', Space Sci. Rev., this volume.

  • Cowley, C.R.: 1995, An introduction to cosmochemistry, Cambridge University Press.

  • Den Hartog, E.A., Curry, J.J., Wickliffe, M.E. and Lawler, J.E.: 1998, ‘Spectroscopic Data for the 6s6p 3 P 1 level of Lu II for the determination of the solar lutetium abundance', Solar Phys. 178, 239–244.

    Article  ADS  Google Scholar 

  • Dziembowski, W.: 1998, ‘Shortcomings of standard solar models', Space Sci. Rev., this volume.

  • Feldman, U.: 1998, ‘FIP effect: optical observations', Space Sci. Rev., this volume.

  • Gabriel, A.H., Culhane, J.L., Patchett, B. E., Breevelt, E. R., Lang, J., Parkinson, J. H., Payne, J. and Norman, K.: 1995, ‘Spacelab 2 measurement of the solar coronal helium abundance', Adv. Space Res. 15, 63–67.

    Article  ADS  Google Scholar 

  • Gabricl, M.: 1997, ‘Influence of heavy element and rotationally induced diffusions on the solar models', A&A 327, 771–778.

    ADS  Google Scholar 

  • Geiss, J.: 1998, ‘Solar wind abundance measurements: constraints on the FIP mechanism', Space Sci. Rev., this volume.

  • Goldberg, L., Müller, E.A. and Aller, L.H.: 1960, ‘The abundances of the elements in the solar atmosphere', ApJ Suppl. Ser. 5,No 45, 1–137 (GMA).

  • Goldschmidt, V.M.: 1937, ‘Geochemische Verteilungsgestze der Elemente, IX. Die Mengenverhältnisse der Elemente und der Atom-Arten', Skrifter Norske Videnskaps-Akad. Oslo, Math. Naturw. Kl. Nr. 4, 99–101.

    Google Scholar 

  • Grevesse, N. and Noels, A.: 1993, ‘Atomic data and the spectrum of the solar photosphere', Physica Scripta T47, 133–138.

    ADS  Google Scholar 

  • Grevesse, N. and Sauval, A.J.: 1994, ‘Molecules in the Sun and Molecular data', in Molecular Opacities in the Stellar Environment, ed U.G. Jørgensen, Lecture Notes in Physics, Springer-Verlag 428, 196–209.

  • Grevesse, N., Noels, A. and Sauval, A.J.: 1995, ‘Atomic and molecular data in solar photospheric spectroscopy', in Laboratory and Astronomical High Resolution Spectra, eds A.J. Sauval, R. Blomme and N. Grevesse, ASP Conference Series 81, 74–87.

  • Grevesse, N., Noels, A. and Sauval, A.J.: 1996, ‘Standard Abundances', in Cosmic Abundances, eds S.S. Holt and G. Sonneborn, ASP Conference Series 99, 117–126.

  • Grevesse, N. and Sauval, A.J.: 1998, ‘An improved photospheric model based on Fe I lines', A&A, in preparation.

  • Gustafsson, B.: 1998, ‘How sunlike is the Sun?', Space Sci. Rev., this volume.

  • Hénoux, J.C.: 1998, ‘FIP: theory', Space Sci. Rev., this volume.

  • Holweger, H.: 1967, ‘Ein empirisches Modell des Sonnenatmosphäre mit tokalem thermodynamischen Gleichgewicht', Z. Astrophys. 65, 365–417.

    ADS  Google Scholar 

  • Holweger, H.: 1996, ‘Solar element abundance, non-LTE line formation in cool stars and atomic data', Physica Scripta T65, 151–157.

    ADS  Google Scholar 

  • Holweger, H. and Müller, E.A.: 1974, ‘The Photospheric Barium Spectrum: Solar Abundance and Collision Broadening of Ba II Lines by Hydrogen', Solar Physics 39, 19–30.

    Article  ADS  Google Scholar 

  • Kiselman, D. and Carlsson, M.: 1996, ‘The NETE formation of neutral-boron lines in cool stars', A&A 311, 680–689.

    ADS  Google Scholar 

  • Kostik, R.I., Shchukina, N.G. and Rutten, R.J.: 1996, ‘The solar iron abundance: not the last word', A&A 305, 325–342.

    ADS  Google Scholar 

  • Kurucz, R.L.: 1995, ‘The solar spectrum: atlases and line identifications', in Laboratory and Astronomical High Resolution Spectra, eds A.J. Sauval, R. Blomme and N. Grevesse, ASP Conference Series 81, 17–31.

  • Minnaert, M. and Mulders, G.F.W.: 1931, ‘Dopplereffekt und Dämpfung bei den Fraunhoferschen Linien', Z. Astrophys. 2, 165–181.

    MATH  ADS  Google Scholar 

  • Minnaert, M. and Slob, C.: 1931, ‘Die Totalintensitäten der Fraunhoferschen Linien', Proc. Kon. Akad. van Wetens. Amsterdam 34, 542–549.

    MATH  Google Scholar 

  • Pagel, B.E.J.: 1973, ‘Stellar and solar abundances', Space Science Reviews 15, 1–21.

    Article  ADS  Google Scholar 

  • Pagel, B.E.J.: 1997, Nucleosynthesis and chemical evolution of galaxies, Cambridge University Press.

  • Palme, H. and Beer, H.: 1993, ‘Abundances of the elements in the solar system', Landolt-Börnstein, Group VI, Astronomy and Astrophysics, ed. H.H. Voigt, Springer-Verlag, Berlin, 3 (Extension and supplement to Vol. 2, Subvol. a) 196–221.

    Google Scholar 

  • Peter, H.: 1998, ‘Element fractionation in the solar chromosphere driven by ionization-diffusion processes', Space Sci. Rev., this volume.

  • Ramaty, R.: 1996, ‘Abundance determination from gamma ray spectroscopy', in Cosmic Abundances, eds S.S. Holt and G. Sonneborn, ASP Conference Series 99, 377–380.

  • Raymond, J.: 1998, ‘Structure of the corona and compositional differences', Space Sci. Rev., this volume.

  • Reames, D.V.: 1998, ‘Solar energetic particles: sampling coronal abundances', Space Sci. Rev., this volume.

  • Rogers, F.: 1998, ‘Opacity of stellar matter', Space Sci. Rev., this volume.

  • Russell, H.N.: 1929, ‘On the composition of the Sun's atmosphere', ApJ 70, 11–82.

    Article  ADS  Google Scholar 

  • Rutten, R.J.: 1998, ‘The lower atmosphere', Space Sci. Rev., this volume.

  • Sauval, A.J. and Grevesse, N.: 1998, ‘Revised solar abundances of carbon, nitrogen and oxygen', A&A, in preparation.

  • Solanki, S.: 1998, ‘Structure of the photosphere', Space Sci. Rev., this volume.

  • Strömgren, B.: 1940, ‘On the chemical composition of the solar atmosphere', in Festschrift für Elis Strömgren, ed K. Lundmark, Einar Munksgaard, Kopenhagen, 218–257, (Publ. Medd. Københavns Obs. Nr. 127, 218–257).

    Google Scholar 

  • Suess, H.E.: 1988, ‘V.M. Goldschmidt and the origin of the elements', Applied Geochem. 3, 385–391.

    Article  Google Scholar 

  • Suess, H.E. and Urey, H.C.: 1956, ‘Abundances of the elements', Rev. Mod. Phys. 28, 53–74.

    Article  ADS  Google Scholar 

  • Trimble, V.: 1975, ‘The origin and abundances of the elements', Rev. Mod. Phys. 47, 877–976.

    Article  ADS  Google Scholar 

  • Trimble, V.: 1991, ‘The origin and abundances of the chemical elements revisited', The Astron. Astrophys. Rev. 3, 1–46.

    Article  ADS  Google Scholar 

  • Trimble, V.: 1996, ‘Cosmic abundances: past, present, and future', in Cosmic Abundances, eds S.S. Holt and G. Sonneborn, ASP Conference Series 99, 3–35.

  • Turck-Chièze, S.: 1995, ‘The role of abundances in the solar interior models', Adv. Space Res. 15, 85–94.

    Article  ADS  Google Scholar 

  • Turck-Chièze, S.: 1998, ‘Towards a detailed view of the solar nuclear core', Space Sci. Rev., this volume.

  • Turcotte, S. and Christensen-Dalsgaard, J.: 1998, ‘Solar models with consistent diffusion and monochromatic opacities', Space Sci. Rev., this volume.

  • Unsöld, A.: 1948, ‘Quantitative Analyse der Sonnenatmosphäre', Z. Astrophys. 24, 306–329.

    Google Scholar 

  • Vauclair, S.: 1998, ‘Microphysics: element segregation', Space Sci. Rev., this volume.

  • von Zahn, U. and Hunten, D.M.: 1996, ‘The helium mass fraction in Jupiter's atmosphere', Science 272, 849–851.

    ADS  Google Scholar 

  • Widing, K.G.: 1997, ‘Emerging active regions on the Sun and the photospheric abundance of neon', ApJ 480, 400–405.

    Article  ADS  Google Scholar 

  • Wieler, R.: 1998, ‘Lunar samples and meteorites as archive for solar wind noble gases', Space Sci. Rev., this volume.

  • Wildt, R.: 1939, ‘Electron affinity in astrophysics', ApJ 89, 295–301, and ‘Negative ions of hydrogen and the opacity of stellar atmospheres', ApJ 90, 611–620.

    Article  ADS  Google Scholar 

  • Young, P.R.: 1998, ‘Atomic physics for atmospheric composition measurements', Space Sci. Rev., this volume.

  • Young, P.R., Mason, H.E., Keenan, F.P. and Widing, K.G.: 1997, ‘The Ar/Ca relative abundance in solar coronal plasma', ApJ 323, 243–249.

    ADS  Google Scholar 

  • Zalm, J.-P.: 1998, ‘Macrophysics: large-scale advection, turbulent diffusion, wave transport', Space Sci. Rev., this volume.

  • Zurbuchen, T.H., Fisk, L.A., Gloeckler, G. and Schwadron, N.A.: 1998, ‘Elemental enhancement as a coronal effect', Space Sci. Rev., this volume.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grevesse, N., Sauval, A. Standard Solar Composition. Space Science Reviews 85, 161–174 (1998). https://doi.org/10.1023/A:1005161325181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005161325181

Navigation