iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dx.doi.org/10.1007/s12008-009-0058-8
Integration of thermomechanical strains into tolerancing analysis | International Journal on Interactive Design and Manufacturing (IJIDeM) Skip to main content
Log in

Integration of thermomechanical strains into tolerancing analysis

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

To improve the performance of a helicopter turboshaft engine requires optimising the energy yield of the different components, and more particularly controlling clearance between the tips of the high pressure turbine blades and the stator. Dimension-chain tools take into account the manufacturing dispersion of the parts and assembly defects. This ensures the interchangeability of the different components and guarantees that a turbine can carry out different service functions, as the turbine is modelled in infinitely rigid solids. However, this approach does not take thermomechanical effects into account. And yet, the different operating regimes of a helicopter engine make it indispensable that the effects caused by the thermodynamic cycle should be integrated. The aim of this article is to show how using dimension chain and thermomechanical tools can contribute to controlling clearances at the tip of a high pressure turbine blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jack Hu S., Camelio J.: Modeling and Control of Compliant Assembly Systems. CIRP Ann. Manuf. Technol. 55(1), 19–22 (2006)

    Article  Google Scholar 

  2. Stewart M.L., Chase K.W.: Variation simulation of fixtured assembly for compliant structures using piecewise-linear analysis. Am. Soc. Mech. Eng. 16-1, 591–600 (2005)

    Google Scholar 

  3. Söderberg R., Lindkvist L., Dahlström S.: Computer-aided robustness analysis for compliant assemblies. J. Eng. Des. 17, 411–428 (2006)

    Article  Google Scholar 

  4. Xie K., Wells L., Camelio J.A., Youn B.D.: Variation propagation analysis on compliant assemblies considering contact interaction. J. Manuf. Sci. Eng., Trans. ASME 129(5), 934–942 (2007)

    Article  Google Scholar 

  5. Fleming A.: Geometric relationships between toleranced features. Artif. Intell. 37, 403–412 (1988)

    Article  Google Scholar 

  6. Giordano, M., Duret, D.: Clearance space and deviation space, application to three-dimensional chains of dimensions and positions. In: Proceedings of the Third CIRP Seminar on Computer Aided Tolerancing, ISBN 2-212-08779-9, pp. 179–196, Eyrolles (1993)

  7. Bourdet, P., Ballot, E.: Geometrical behavior laws for computer aided tolerancing. In: Proceedings of the Fourth CIRP Seminar on Computer Aided Tolerancing (1995)

  8. Dantan, J.Y., Ballu, A., Mathieu, L.: Geometrical product specifications—model for product life cycle. Comput. Aided Des. doi:10.1016/j.cad.2008.01.004 (2008)

  9. Ballu, A., Mathieu, L.: Choice of functional specifications using graphs within the frame work of education. In: Proceedings of the Sixth CIRP Seminar on Computer Aided Tolerancing ISBN 0-7923-5654-3, pp. 197–206, Kluwer, Dordrecht (1999)

  10. Turner J.U.: Relative positionning of parts in assemblies using mathematical programming. Comput. Aided Des. 22, 394–400 (1990)

    Article  Google Scholar 

  11. Clément, A., Bourdet, P.: A study of optimal-criteria identification based on the small-displacement screw model. Ann. CIRP 37, (1988)

  12. Teissandier D., Couétard Y., Gérard A.: A computer aided tolerancing model : proportioned assemblies clearance volume. Comput. Aided Des. 31, 805–817 (1999)

    Article  MATH  Google Scholar 

  13. Giordano, M., Samper, S., Petit, J.P.: Tolerance analysis and synthesis by means of deviation domains, axi-symetric cases. In: Proceedings of the 9th CIRP Seminar on Computer Aided Tolerancing, ISBN 978-1-4020-5437-2, pp. 85–94. Springer, Berlin (2005)

  14. Teissandier, D., Delos, V., Couétard, Y.: Operations on polytopes: application to tolerance analysis. In: Proceedings of the Sixth CIRP Seminar on Computer Aided Tolerancing, ISBN 0-7923-5654-3, pp. 425–433. Kluwer, Dordrecht (1999)

  15. Mujezinovi A., Davidson J.K., Shah J.J.: A new mathematical model for geometric tolerances as applied to round faces. ASME Trans. J. Mech. Des. 126, 504–518 (2004)

    Article  Google Scholar 

  16. Roy U., Li B.: Representation and interpretation of geometric tolerances for polyhedral objects. Comput. Aided Des. 31(4), 273–285 (1999)

    Article  MATH  Google Scholar 

  17. Ziegler, G.M.: Lectures on Polytopes, ISBN 0-387-94365-X. Springer, Berlin (1995)

  18. Defazio T.L., Edsall A. C., Gustavson R.E., Hernandez J., Hutchins P.M., Leung H. W., Luby S.C., Metsinger R.W., Nevins J.L., Tung K., Whitney D.E: A prototype of feature-based design for assembly. J. Mech. Des. 115(4), 723–734 (1993)

    Article  Google Scholar 

  19. Whitney D.E., Adams J.D.: Application of screw theory to analysis of mobility and constraint of mechanisms. J. Mech. Des. 123, 1–2632 (2001)

    Article  Google Scholar 

  20. Shen, Z., Shah, J.J., Davidson, J.K.: Analysis neutral data structure for GD&T. J Intell. Manuf. doi:10.1007/s10845-008-0096-2 (2008)

  21. Dantan J.Y., Mathieu L., Ballu A., Martin P.: Tolerance synthesis: quantifier notion and virtual boundary. Comput. Aided Des. 37, 231–240 (2005)

    Article  Google Scholar 

  22. Dufaure J., Teissandier D.: A tolerancing framework to support geometric specifications traceability. Int. J. Adv. Manuf. Technol. 36(9–10), 894–907 (2008)

    Google Scholar 

  23. ISO 3952-1. Kinematic diagrams—graphical symbols—part 1 (1981)

  24. Clément, A., Rivière, A., Serre, P.: TTRS declarative information model. In: Proceedings of the Fourth CIRP Seminar on Computer Aided Tolerancing (1995)

  25. Pierre, L., Teissandier, D., Nadeau, J.P.: Analyse des tolérances géométriques dans un contexte multi-expertises, application à une turbine de moteur d’hélicoptère. In: Proceedings of CFM2007 (2007)

  26. ISO 1101, Geometrical Product Specifications (GPS), Geometrical tolerancing, Tolerances of form, orientation, location and run-out (2004)

  27. ISO 5459, Technical drawings—geometrical tolerancing—datums and datum-systems for geometrical tolerances (1981)

  28. ISO 8015, Technical drawings—fundamental tolerancing principle (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Pierre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, L., Teissandier, D. & Nadeau, J.P. Integration of thermomechanical strains into tolerancing analysis. Int J Interact Des Manuf 3, 247–263 (2009). https://doi.org/10.1007/s12008-009-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-009-0058-8

Keywords

Navigation