iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dx.doi.org/10.1007/s11214-009-9572-z
Planetary Magnetic Fields: Achievements and Prospects | Space Science Reviews Skip to main content
Log in

Planetary Magnetic Fields: Achievements and Prospects

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The past decade has seen a wealth of new data, mainly from the Galilean satellites and Mars, but also new information on Mercury, the Moon and asteroids (meteorites). In parallel, there have been advances in our understanding of dynamo theory, new ideas on the scaling laws for field amplitudes, and a deeper appreciation on the diversity and complexity of planetary interior properties and evolutions. Most planetary magnetic fields arise from dynamos, past or present, and planetary dynamos generally arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about one percent or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planetary liquid cores, the Coriolis force is dynamically important. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of an iron-rich core guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. This has led to an emphasis on the possible role of ongoing differentiation (growth of an inner core or “snow”). Although planetary dynamos mostly appear to operate with an internal field that is not very different from (2ρΩ/σ)1/2 in SI units where ρ is the fluid density, Ω is the planetary rotation rate and σ is the conductivity, theoretical arguments and stellar observations suggest that there may be better justification for a scaling law that emphasizes the buoyancy flux. Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and probably Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. Even small, differentiated planetesimals (asteroids) may have been capable of dynamo action early in the solar system history. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. As a consequence, the understanding of planetary magnetic fields depends as much on our understanding of the history and material properties of planets as it does on our understanding of the dynamo process. Future developments can be expected in our understanding of the criterion for a dynamo and on planetary properties, through a combination of theoretical work, numerical simulations, planetary missions (MESSENGER, Juno, etc.) and laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuna, J.E.P. Connerney, P. Wasilewski et al., Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J. Geophys. Res. Planet. 106, 23403–23417 (2001)

    Article  ADS  Google Scholar 

  • O. Aharonson, M.T. Zuber, S.C. Solomon, Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004)

    Article  ADS  Google Scholar 

  • B.J. Anderson, M.H. Acuna, H. Korth et al., The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008)

    Article  ADS  Google Scholar 

  • J. Arkani-Hamed, Did tidal deformation power the core dynamo of Mars? Icarus 201, 31–43 (2009)

    Article  ADS  Google Scholar 

  • B.A. Buffett, J. Bloxham, Energetics of numerical geodynamo models. Geophys. J. Int. 149, 211–224 (2002)

    Article  ADS  Google Scholar 

  • B.A. Buffett, E.J. Garnero, R. Jeanloz, Sediments at the top of Earth’s core. Science 290, 138–1342 (2000)

    Article  Google Scholar 

  • F.H. Busse, Homogeneous dynamos in planetary cores and in the laboratory. Annu. Rev. Fluid Mech. 32, 383–408 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  • B. Chen, J. Li, S.A. Hauck, Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophys. Res. Lett. 35, L07201 (2008)

    Article  Google Scholar 

  • U.R. Christensen, A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006)

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Wicht, Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus 196, 16–34 (2008)

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Aubert, P. Cardin et al., A numerical dynamo benchmark. Phys. Earth Planet. Int. 128, 25–34 (2001)

    Article  ADS  Google Scholar 

  • U.R. Christensen, V. Holzwarth, A. Reiners, Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009)

    Article  ADS  Google Scholar 

  • D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (McGraw-Hill, New York, 1968), 256 pp.

    Google Scholar 

  • I. De Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, New York, 2001), 528 pp.

    Google Scholar 

  • M. French, T.R. Mattsson, N. Nettelmann et al., Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79 (2009). Article Number: 054107

    Google Scholar 

  • I. Garrick-Bethell, B.P. Weiss, D.L. Shuster et al., Early Lunar magnetism. Science 323, 356–359 (2009)

    Article  ADS  Google Scholar 

  • C.K. Gessmann, B.J. Wood, D.C. Rubie, M.R. Kilburn, Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 184, 367–376 (2001)

    Article  ADS  Google Scholar 

  • G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci. 50, 757–762 (2002)

    Article  ADS  Google Scholar 

  • D. Grodent, B. Bonfond, J.C. Gerard et al., Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, A09201 (2008)

    Article  Google Scholar 

  • D. Gubbins, Energetics of the Earth’s core. J. Geophys. 47, 453–464 (1977)

    Google Scholar 

  • D. Gubbins, The Rayleigh number for convection in the Earth’s core. Phys. Earth Planet. Int. 128, 3–12 (2001)

    Article  ADS  Google Scholar 

  • T. Guillot, Interiors of giant planets inside and outside the solar system. Science 286, 72–77 (1999)

    Article  ADS  Google Scholar 

  • L.L. Hood, A. Zakharian, J. Halekas et al., Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. Planet. 106, 27825–27839 (2001)

    Article  ADS  Google Scholar 

  • W.B. Hubbard, M. Podolak, D.J. Stevenson, The interior of Neptune, in Neptune. Un. Arizona Space Science Series (1995), pp. 109–138

  • C.A. Jones, Convection-driven geodynamo models. Philos. Trans. Roy. Soc. A 358, 873–897 (2000)

    Article  MATH  ADS  Google Scholar 

  • A. Kageyama, T. Miyagoshi, T. Sato, Formation of current coils in geodynamo simulations. Nature 454, 1106–1109 (2008)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, J. Warnecke, L. Bennett et al., Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. Planet. 103, 19963–19972 (1998)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell et al., Magnetized or unmagnetized: ambiguity persists following Galileo’s encounters with Io in 1999 and 2000. J. Geophys. Res. Space 106, 26121–26135 (2001)

    Article  ADS  Google Scholar 

  • S. Labrosse, J.-P. Poirier, J.-L. Le Mouel, The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001)

    Article  ADS  Google Scholar 

  • V. Lainey, J.E. Arlot, O. Karatekin et al., Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009)

    Article  ADS  Google Scholar 

  • J.-J. Liu, P. Goldreich, D.J. Stevenson, Ohmic dissipation constraint on deep-seated zonal winds in Jupiter and Saturn. Icarus 196, 653–664 (2008)

    Article  ADS  Google Scholar 

  • D.E. Loper, Some thermal consequences of a gravitationally powered geodynamo. J. Geophys. Res. 83, 5961–5970 (1978)

    Article  ADS  Google Scholar 

  • J.L. Margot, S.J. Peale, R.F. Jurgens et al., Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007)

    Article  ADS  Google Scholar 

  • R.T. Merrill, M.W. McElhinney, P.L. McFadden, The Magnetic Field of the Earth (Academic Press, New York, 1996), 531 pp.

    Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, New York, 1978), 336 pp.

    Google Scholar 

  • W.J. Nellis, Metallization of fluid hydrogen at 140 GPa (1.4 Mbar): implications for Jupiter. Planet. Space Sci. 48, 671–677 (2000)

    Article  ADS  Google Scholar 

  • W.J. Nellis, N.C. Holmes, A.C. Mitchell et al., Equation of state and electricalconductivity of “synthetic Uranus”, a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar). J. Chem. Phys. 107, 9096–9100 (1997)

    Article  ADS  Google Scholar 

  • F. Nimmo, Energetics of asteroid dynamos and the role of compositional convection. Geophys. Res. Lett. 36, L10201 (2009)

    Article  ADS  Google Scholar 

  • F. Nimmo, D.J. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. Planet. 105, 11969–11979 (2000)

    Article  ADS  Google Scholar 

  • E.N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon Press and Oxford University Press, New York, 1979), 841 pp.

    Google Scholar 

  • J.-P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, New York, 1991), p. 191

    Google Scholar 

  • J.-P. Poirier, Light-elements in the Earth’s outer core—a critical-review. Phys. Earth Planet. Int. 85, 319–337 (1994)

    Article  ADS  Google Scholar 

  • P. Roberts, G.A. Glatzmaier, Geodynamo theory and simulations. Rev. Modern Phys. 72, 1081–1123 (2000)

    Article  ADS  Google Scholar 

  • G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, T. Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. by C. Chapman et al. (University of Arizona Press, Tucson, 1988), pp. 429–460

    Google Scholar 

  • G. Schubert, V.S. Solomatov, P.J. Tackley, D.L. Turcotte, Mantle Convection and the thermal evolution of Venus, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1998), pp. 429–460

    Google Scholar 

  • S. Stanley, J. Bloxham, Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004)

    Article  ADS  Google Scholar 

  • S. Stanley, J. Bloxham, Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 184, 556–572 (2006)

    Article  ADS  Google Scholar 

  • S. Stanley, J. Bloxham, W.E. Hutchison, M.T. Zuber, Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 27–38 (2005)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Turbulent thermal convection in the presence of rotation and a magnetic field: a heuristic theory. Geophys. Astrophys. Fluid Dyn. 12, 139–169 (1979)

    Article  MATH  ADS  Google Scholar 

  • D.J. Stevenson, Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn. 21, 113–127 (1982)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Rep. Progr. Phys. 46, 555–620 (1983)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Limits on lateral density and velocity variations in the Earth’s outer core. Geophys. J. Roy. Astron. Soc. 88, 311–319 (1987a)

    Google Scholar 

  • D.J. Stevenson, Mercury’s magnetic field—a thermoelectric dynamo. Earth Planet. Sci. Lett. 82, 114–120 (1987b)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Europa’s ocean—the case strengthens. Science 289, 1305–1307 (2000)

    Article  Google Scholar 

  • D.J. Stevenson, Mars’ core and magnetism. Nature 412, 214–219 (2001)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Introduction to planetary interiors, in Proceedings of the International School of Physics “Enrico Fermi” (Italian Physical Society, Bologna, 2002)

    Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208(2003), 1–11 (2003)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, T. Spohn, G. Schubert, Magnetism thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • A.J. Stewart, M.W. Schmidt, W. van Westrenen, C. Liebske, Mars: a new core-crystallization regime. Science 316, 1323–1325 (2007)

    Article  ADS  Google Scholar 

  • B.P. Weiss, J.S. Berdahl, L. Elkins-Tanton et al., Magnetism on the angrite parent body and the early differentiation of planetesimals. Science 322, 713–716 (2008a)

    Article  ADS  Google Scholar 

  • B.P. Weiss, L.E. Fong, H. Vali et al., Paleointensity of the ancient Martian magnetic field. Geophys. Res. Lett. 35, L23207 (2008b)

    Article  ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, C.F. Yoder et al., Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planet. 106, 27933–27968 (2001)

    Article  ADS  Google Scholar 

  • J.P. Williams, O. Aharonson, F. Nimmo, Powering Mercury’s dynamo. Geophys. Res. Lett. 34, L21201 (2007)

    Article  ADS  Google Scholar 

  • C. Zimmer, K.K. Khurana, M.G. Kivelson, Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Stevenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, D.J. Planetary Magnetic Fields: Achievements and Prospects. Space Sci Rev 152, 651–664 (2010). https://doi.org/10.1007/s11214-009-9572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9572-z

Keywords

Navigation