iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dx.doi.org/10.1007/s11071-006-1972-y
On the Mechanisms Behind Chaos | Nonlinear Dynamics Skip to main content
Log in

On the Mechanisms Behind Chaos

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic systems are observed everywhere. Electronic circuit analogues based on the differential equations of the models for the chaotic systems are often used to study the nature of chaotic systems. This tutorial is an attempt to classify electronic chaotic oscillators according to the mechanism behind the chaotic behavior, e.g. one group is based on the sudden interrupt of inductive currents, another group is based on the sudden parallel coupling of capacitors with different voltages, and a third group may be based on multiplication of signals. An example of chaos based on disturbance of integration is discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, E. H., ‘Some recent developments of regenerative circuits’, Proceedings of Institute of Radio Engineering 10(8), 1922, 244–260.

    Google Scholar 

  2. Leenaerts, D. M. W., ‘Chaotic behaviour in super regenerative detectors’, IEEE Transactions on Circuits and Systems I 43(3), 1996, 169–176.

    Article  Google Scholar 

  3. van der Pol, B. and van der Mark, J., ‘Frequency demultiplication’, Nature 120(3019), 1927, 363–364, also reprinted in Refs. [4, 5].

    Google Scholar 

  4. Bremmer, H. and Bouwkamp, C. J. (eds.), Balthasar van der Pol – Selected Scientific Papers, Vols. I–II, North-Holland, Amsterdam, 1960, pp. 391–393.

  5. Kapitaniak, T. (ed.), Chaotic Oscillators – Theory and Applications, World Scientific, Singapore, 1992, pp. 4–5.

  6. Kennedy, M. P. and Chua, L. O., ‘Van der Pol and chaos’, IEEE Transactions on Circuits and Systems I CAS-33(10), 1986, 974–980.

    MathSciNet  Google Scholar 

  7. Elwakil, A. E. and Kennedy, M. P., ‘Design methodology for autonomous chaotic oscillators’, in Chaos in Circuits and Systems, G. Chen and T. Ueta (eds.), World Scientific Series on Nonlinear Science, Series B, Vol. 11, World Scientific, Singapore, 2002, pp. 23–49.

    Google Scholar 

  8. Chua, L. O., ‘CNN: A paradigm for complexity’, in Visions of Nonlinear Science in the 21st Century, J. L. Huertas, W.-K. Chen, and R. N. Madan (eds.), World Scientific, Singapore, 1999, pp. 529–837, Chapter 13; local activity, pp. 793–826.

  9. Huertas, J. L. Chen, W.-K., and Madan, R. N. (eds.), Visions of Nonlinear Science in the 21st Century, World Scientific, Singapore, 1999.

  10. Chen, G. and Ueta, T. (eds.), Chaos in Circuits and Systems, World Scientific Series on Nonlinear Science, Series B, Vol. 11, World Scientific, Singapore, 2002, p. 630.

  11. Lakshmanan, M. and Murali, K., Chaos in Nonlinear Oscillators – Controlling and Synchronization, World Scientific, Singapore, 1996.

    Google Scholar 

  12. Ogorzalek, M. J., in Chaos and Complexity in Nonlinear Electronic Circuits, World Scientific, Singapore, 1997.

    Google Scholar 

  13. Tamasevicius, A., Analog Techniques for Modelling, Control and Synchronization of Dynamical Chaos, Habilitation Thesis, Physical Scienses, Physics (02P), Semiconductor Physics Institute, Vilnius, Lithuania, June 1999, pp. 1–99.

  14. Tokunaga, R., Komuro, M., Matsumoto, T., and Chua, L. O., ‘LORENZ ATTRACTOR from an electrical circuit with uncoupled continuous piecewise-linear resistor’, International Journal of Circuit Theory Application 17, 1989, 71–85.

    MathSciNet  Google Scholar 

  15. Sprott, J. C., ‘Simple chaotic systems and circuits’, American Journal Physics 68(8), 2000, 758–763.

    Article  Google Scholar 

  16. Lindberg, E., Tamasevicius, A., Cenys, A., Mykolaitis, G., and Namajunas, A., ‘Hyperchaos via χ-diode’, in Proceedings NDES-98The 6th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems, Budapest, July 1998, pp. 125–128.

  17. Bizzarri, F. and Storace, M., ‘RC op-amp implementation of hysteresis chaotic oscillator’, Electronics Letter 37(4), 2001, 209–211.

    Article  Google Scholar 

  18. Lindberg, E., ‘“A simple explanation of the physical behaviour of Chua’s circuit” or “A route to the hearts of Chua’s circuit’’, in Nonlinear Dynamics of Electronic Systems, A. C. Davies and W. Schwarz (eds.), Proceedings of the Workshop NDES’93, Dresden, July 1993, pp. 80–88, World Scientific, Singapore, 1994.

  19. Madan, R. N. (ed.), Chua’s Circuit – A Paradigm for Chaos, World Scientific, Singapore, 1993.

  20. Chua, L. O. Komuro, M., and Matsumoto, T., ‘The double scroll family: Parts I and II’, IEEE Transactions on Circuits and Systems I CAS-33(11), 1986, 1072–1118.

    MathSciNet  Google Scholar 

  21. Chen, G., Control and synchronization of chaotic systems (a bibliography), ECE Department, University of Houston, Texas, 1997, website: ftp://ftp.egr.uh.edu/pub/TeX/chaos.tex.

  22. Suykens, J. and Vandewalle, J., ‘Quasilinear approach to nonlinear systems and the design of $n$-double scroll (n = 1, 2, 3, 4,...)’, IEE Proceedings G 138(5), 1991, 595–603.

    Google Scholar 

  23. Tang, W. K. S., Zhong, G. Q., Chen, G. R., and Man, K. F., ‘Generation of n-scroll attractors via sine function’, IEEE Transactions on Circuits and Systems I 48(11), 2001, 1369–1372.

    Article  MathSciNet  Google Scholar 

  24. Hoh, K. I., Irita, T., Tsujita, T., and Fujishima, M., in Generation of Chaos with Simple Sets of Semiconductor Devices, in Proceedings of the 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, L. C. Jain and R. K. Jain (eds.), Adelaide, Australia, April 21–23, 1998.

  25. ‘TISEAN – Nonlinear time series analysis’, website: http://www.mpipks-dresden.mpg.de/tisean/TISEAN_2.1/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Lindberg.

Additional information

Paper presented at ‘NDES 2004‘, Evora, Portugal, May 2004.

IEEE life member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindberg, E. On the Mechanisms Behind Chaos. Nonlinear Dyn 44, 219–224 (2006). https://doi.org/10.1007/s11071-006-1972-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-1972-y

Key Words

Navigation