iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dx.doi.org/10.1007/BF01405491
Local symmetries and conservation laws | Acta Applicandae Mathematicae Skip to main content
Log in

Local symmetries and conservation laws

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Starting with Lie's classical theory, we carefully explain the basic notions of the higher symmetries theory for arbitrary systems of partial differential equations as well as the necessary calculation procedures. Roughly speaking, we explain what analogs of ‘higher KdV equations’ are for an arbitrary system of partial differential equations and also how one can find and use them. The cohomological nature of conservation laws is shown and some basic results are exposed which allow one to calculate, in principle, all conservation laws for a given system of partial differential equations. In particular, it is shown that ‘symmetry’ and ‘conservation law’ are, in some sense, the ‘dual’ conceptions which coincides in the ‘self-dual’ case, namely, for Euler-Lagrange equations. Training examples are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DhoogheP.: ‘Les transformations de contact sur un espace fibré des jets d'application’,C.R. Acad. Sci. 287 (1978), A1125-A1128.

    Google Scholar 

  2. GardnerC. S.: ‘Korteweg-de Vries equation and generalisation. IV: The Korteweg-de Vries equation as a Hamiltonian system’,J. Math. Phys. 12 (1971), 1548–1551.

    Google Scholar 

  3. IbragimovN. H. and AndersonR. L.: ‘Lie-Bäcklund tangent transformations’,J. Math. Anal. Appl. 59 (1977), 145–162.

    Google Scholar 

  4. KumeiS.: ‘Invariance transformations, invariance group transformations and invariance groups of the sine-Gordon equation’,J. Math. Phys. 16 (1975), 2461–2468.

    Google Scholar 

  5. KupershmidtB.: ‘On geometry of jet manifolds’,Uspehi Mat. Nauk. 30 (1975), 211–212 (in Russian).

    Google Scholar 

  6. KupershmidtB.: ‘Geometry of jet bundles and the Structure of Lagrangian and Hamiltonian formalisms’,Lecture Notes in Math., Vol 775, Springer-Verlag, New York, 1980, pp. 162–217.

    Google Scholar 

  7. LaxP. D.: ‘Integrals of nonlinear equations of evolution and solitary waves’,Comm. Pure Appl. Math. 21 (1968), 467–490.

    Google Scholar 

  8. LychaginV. V.: ‘Local classification of nonlinear first-order partial differential equations’,Uspehi Mat. Nauk. 30 (1975), 101–171. (English translation inRussian Math. Surveys 3 (1975), 105–176).

    Google Scholar 

  9. LychaginV. V.: ‘Geometric singularities of solutions of nonlinear differential equations’,Dokl. Akad. Nauk. SSSR 261 (1981), 1299–1303 (in Russian); 680–685 (English).

    Google Scholar 

  10. LychaginV. V.: ‘Geometry and topology of shock waves’,Dokl. Akad. Nauk. SSSR 264 (1982), 551–555 (in Russian); 685–689 (English).

    Google Scholar 

  11. MarsdenJ. and WeinsteinA.: ‘Reduction of symplectic manifolds with symmetry’,Rep. Math. Phys. 5 (1974), 121–130.

    Google Scholar 

  12. MiuraR. M., GardnerC. S., and KruskalM. D.: ‘Korteweg-de Vries equation and generalisations. II: Existence of conservation laws and constants of motion’,J. Math. Phys. 9 (1968), 1204–1209.

    Google Scholar 

  13. OlverP.: ‘Symmetry groups and group invariant solutions of partial differential equations’,J. Diff. Geom. 14 (1979), 497–542.

    Google Scholar 

  14. OttersonP. and SvetlichnyG.: ‘On derivative-dependent infinitesimal deformations of differential maps’,J. Diff. Eq. 36 (1981), 270–294.

    Google Scholar 

  15. OvsiannikovL. V.:Group Analysis of Differential Equations, Nauka, Moscow, 1978 (English translation: Academic Press, 1982).

    Google Scholar 

  16. Pommaret, J.-F.:Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, 1978.

  17. NovikovS. P. (ed.):Soliton Theory, Nauka, Moscow, 1980.

    Google Scholar 

  18. TsujishitaT.: ‘On variation bicomplexes associated to differential equations’,Osaka J. Math. 19 (1982), 311–363.

    Google Scholar 

  19. VinogradovA. M.: ‘On the algebra-geometric foundations of Lagrangian field theory’,Dokl. Akad. Nauk. SSSR 236 (1977), 284–287 (English translation inSoviet Math. Dokl. 18 (1977), 1200–1204.

    Google Scholar 

  20. VinogradovA. M.: ‘A spectral sequence associated with a nonlinear differential equation and algebrageometric foundations of Lagrangian field theory with constraints’,Dokl. Akad. Nauk. SSSR 238 (1978), 1028–1031 (English translation inSoviet Math. Dokl. 19 (1978), 144–148).

    Google Scholar 

  21. VinogradoyA. M.: ‘The Theory of higher infinitesimal symmetries of nonlinear partial differential equations’,Dokl. Akad. Nauk. SSSR 248 (1979), 274–278 (English translation inSoviet Math. Dokl. 20 (1979), 985–990).

    Google Scholar 

  22. VinogradovA. M.: ‘Geometry of nonlinear differential equations’,Itogi Nauki i Tekniki, VINITI, Ser. ‘Problemy Geometrii’ 11 (1980), 89–134 (English translation inJ. Soviet Math. 17 (1981), 1624–1649).

    Google Scholar 

  23. VinogradovA. M.: ‘The category of nonlinear differential equations’, inEquations on manifolds, Izdat. Voronezh. Gosudarstv. Universitet, Voronezh, 1982, pp. 26–51 (in Russian).

    Google Scholar 

  24. Vinogradov, A. M.: ‘TheC-spectral sequence, Lagrangian formalism and conservation laws’,J. Math. Anal. Appl. (1984) to appear.

  25. VinogradovA. M. and Krasil'scikI. S.: ‘A Method of computing higher symmetries of nonlinear evolution equations, and nonlocal symmetries’,Dokl. Akad. Nauk. SSSR 253 (1980), 1289–1293 (English translation inSoviet Math. Dokl. 22 (1980), 235–239).

    Google Scholar 

  26. WahlquistH. D. and EstabrookF. B.: ‘Prolongation structures on nonlinear evolution equations’,J. Math. Phys. 16 (1975), 1–7.

    Google Scholar 

  27. ZakharovV. E. and FaddeevL. D.: ‘Korteweg-de Vries equation: a completely integrable Hamiltonian system’,Funkt. Anal. Appl. 5 (1971), 18–27 (Russian); 280–287 (English).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from the Russian by B. A. Kuperschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, A.M. Local symmetries and conservation laws. Acta Appl Math 2, 21–78 (1984). https://doi.org/10.1007/BF01405491

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01405491

AMS (MOS) Subject classifications (1980)

Key words

Navigation