Abstract
Starting with Lie's classical theory, we carefully explain the basic notions of the higher symmetries theory for arbitrary systems of partial differential equations as well as the necessary calculation procedures. Roughly speaking, we explain what analogs of ‘higher KdV equations’ are for an arbitrary system of partial differential equations and also how one can find and use them. The cohomological nature of conservation laws is shown and some basic results are exposed which allow one to calculate, in principle, all conservation laws for a given system of partial differential equations. In particular, it is shown that ‘symmetry’ and ‘conservation law’ are, in some sense, the ‘dual’ conceptions which coincides in the ‘self-dual’ case, namely, for Euler-Lagrange equations. Training examples are also given.
Similar content being viewed by others
References
DhoogheP.: ‘Les transformations de contact sur un espace fibré des jets d'application’,C.R. Acad. Sci. 287 (1978), A1125-A1128.
GardnerC. S.: ‘Korteweg-de Vries equation and generalisation. IV: The Korteweg-de Vries equation as a Hamiltonian system’,J. Math. Phys. 12 (1971), 1548–1551.
IbragimovN. H. and AndersonR. L.: ‘Lie-Bäcklund tangent transformations’,J. Math. Anal. Appl. 59 (1977), 145–162.
KumeiS.: ‘Invariance transformations, invariance group transformations and invariance groups of the sine-Gordon equation’,J. Math. Phys. 16 (1975), 2461–2468.
KupershmidtB.: ‘On geometry of jet manifolds’,Uspehi Mat. Nauk. 30 (1975), 211–212 (in Russian).
KupershmidtB.: ‘Geometry of jet bundles and the Structure of Lagrangian and Hamiltonian formalisms’,Lecture Notes in Math., Vol 775, Springer-Verlag, New York, 1980, pp. 162–217.
LaxP. D.: ‘Integrals of nonlinear equations of evolution and solitary waves’,Comm. Pure Appl. Math. 21 (1968), 467–490.
LychaginV. V.: ‘Local classification of nonlinear first-order partial differential equations’,Uspehi Mat. Nauk. 30 (1975), 101–171. (English translation inRussian Math. Surveys 3 (1975), 105–176).
LychaginV. V.: ‘Geometric singularities of solutions of nonlinear differential equations’,Dokl. Akad. Nauk. SSSR 261 (1981), 1299–1303 (in Russian); 680–685 (English).
LychaginV. V.: ‘Geometry and topology of shock waves’,Dokl. Akad. Nauk. SSSR 264 (1982), 551–555 (in Russian); 685–689 (English).
MarsdenJ. and WeinsteinA.: ‘Reduction of symplectic manifolds with symmetry’,Rep. Math. Phys. 5 (1974), 121–130.
MiuraR. M., GardnerC. S., and KruskalM. D.: ‘Korteweg-de Vries equation and generalisations. II: Existence of conservation laws and constants of motion’,J. Math. Phys. 9 (1968), 1204–1209.
OlverP.: ‘Symmetry groups and group invariant solutions of partial differential equations’,J. Diff. Geom. 14 (1979), 497–542.
OttersonP. and SvetlichnyG.: ‘On derivative-dependent infinitesimal deformations of differential maps’,J. Diff. Eq. 36 (1981), 270–294.
OvsiannikovL. V.:Group Analysis of Differential Equations, Nauka, Moscow, 1978 (English translation: Academic Press, 1982).
Pommaret, J.-F.:Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, 1978.
NovikovS. P. (ed.):Soliton Theory, Nauka, Moscow, 1980.
TsujishitaT.: ‘On variation bicomplexes associated to differential equations’,Osaka J. Math. 19 (1982), 311–363.
VinogradovA. M.: ‘On the algebra-geometric foundations of Lagrangian field theory’,Dokl. Akad. Nauk. SSSR 236 (1977), 284–287 (English translation inSoviet Math. Dokl. 18 (1977), 1200–1204.
VinogradovA. M.: ‘A spectral sequence associated with a nonlinear differential equation and algebrageometric foundations of Lagrangian field theory with constraints’,Dokl. Akad. Nauk. SSSR 238 (1978), 1028–1031 (English translation inSoviet Math. Dokl. 19 (1978), 144–148).
VinogradoyA. M.: ‘The Theory of higher infinitesimal symmetries of nonlinear partial differential equations’,Dokl. Akad. Nauk. SSSR 248 (1979), 274–278 (English translation inSoviet Math. Dokl. 20 (1979), 985–990).
VinogradovA. M.: ‘Geometry of nonlinear differential equations’,Itogi Nauki i Tekniki, VINITI, Ser. ‘Problemy Geometrii’ 11 (1980), 89–134 (English translation inJ. Soviet Math. 17 (1981), 1624–1649).
VinogradovA. M.: ‘The category of nonlinear differential equations’, inEquations on manifolds, Izdat. Voronezh. Gosudarstv. Universitet, Voronezh, 1982, pp. 26–51 (in Russian).
Vinogradov, A. M.: ‘TheC-spectral sequence, Lagrangian formalism and conservation laws’,J. Math. Anal. Appl. (1984) to appear.
VinogradovA. M. and Krasil'scikI. S.: ‘A Method of computing higher symmetries of nonlinear evolution equations, and nonlocal symmetries’,Dokl. Akad. Nauk. SSSR 253 (1980), 1289–1293 (English translation inSoviet Math. Dokl. 22 (1980), 235–239).
WahlquistH. D. and EstabrookF. B.: ‘Prolongation structures on nonlinear evolution equations’,J. Math. Phys. 16 (1975), 1–7.
ZakharovV. E. and FaddeevL. D.: ‘Korteweg-de Vries equation: a completely integrable Hamiltonian system’,Funkt. Anal. Appl. 5 (1971), 18–27 (Russian); 280–287 (English).
Author information
Authors and Affiliations
Additional information
Translated from the Russian by B. A. Kuperschmidt.
Rights and permissions
About this article
Cite this article
Vinogradov, A.M. Local symmetries and conservation laws. Acta Appl Math 2, 21–78 (1984). https://doi.org/10.1007/BF01405491
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01405491