Abstract
The existence of a maximum isothermal core mass fraction (q max), the Schoenberg-Chandrasekhar limit, is one of the ‘classic’ results from the theory of stellar structure. This limit can be demonstrated through a simplified composite polytrope model in which an isothermal core is surrounded by ann=1 polytrope envelope. While this model underestimatesq mas by ∼25% in the homogeneous case, it is accurate to within 5% in the more realistic inhomogeneous situation.
Similar content being viewed by others
References
Beech, M.: 1986,Astron. Astrophys. 156, 391.
Beech, M.: 1988,Astrophys. Space Sci. (submitted).
Chandrasekhar, S.: 1939,An Introduction to the Study of Stellar Structure, The University of Chicago Press, Chicago.
Cox, J. P. and Giuli, R. T.: 1968,Principles of Stellar Structure. Gordon and Breach, New York, 2, p. 994.
Eggleton, P. P. and Faulkner, J.: 1981, in I. Iben and A. Renzini (eds.),Physical Processes in Red Giants, D. Reidel Publ. Co., Dordrecht, Holland, p. 179.
Gamow, G.: 1938,Astrophys. J. 87, 206.
Henrich, L. R. and Chandrasekhar, S.: 1941,Astrophys. J. 94, 525.
Hjellming, M. S. and Webbink, R. F.: 1987,Astrophys. J. 318, 795.
Horedt, G. P.: 1986,Astrophys. Space Sci. 126, 357.
Maeder, A.: 1971,Astron. Astrophys. 14, 351.
McCrea, W.: 1957,Monthly Notices Roy. Astron. Soc. 117, 562.
Schoenberg, M. and Chandrasekhar, S.: 1942,Astrophys. J. 96, 161.
Stein, R. F.: 1966, in R. F. Stein and A. G. W. Cameron (eds.),Stellar Evolution, Plenum Press, New York, p. 3.
Yahil, A. and Van den Horn, L.: 1985,Astrophys. J. 296, 554.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Beech, M. The Schoenberg-Chandrasekhar limit: A polytropic approximation. Astrophys Space Sci 147, 219–227 (1988). https://doi.org/10.1007/BF00645666
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00645666