iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://de.m.wikipedia.org/wiki/Siebzehneck
Siebzehneck – Wikipedia

Das Siebzehneck, 17-Eck oder Heptadekagon (von altgriechisch ἑπτακαίδεκα heptakaídeka, deutsch ‚siebzehn‘ und γωνία gōnía, deutsch ‚Winkel, Ecke‘)[1] ist eine geometrische Figur, die zur Gruppe der Vielecke (Polygone) gehört. Es ist definiert durch siebzehn Punkte, die durch siebzehn Strecken zu einem geschlossenen Linienzug verbunden sind. Im Folgenden werden ausschließlich das regelmäßige Siebzehneck, das konvex ist, siebzehn gleich lange Seiten hat und dessen Ecken auf einem gemeinsamen Umkreis liegen, sowie das regelmäßige überschlagene Siebzehneck beschrieben.

Regelmäßiges Siebzehneck
Regelmäßiges Siebzehneck

Mehr als 2000 Jahre lang war man aufgrund von Fehlversuchen davon überzeugt, das Siebzehneck sei nicht allein mit Zirkel und Lineal konstruierbar. Erst Ende des 18. Jahrhunderts entdeckte der damals achtzehnjährige Carl Friedrich Gauß eine Formel, mit deren Hilfe die Konstruktion gelingt. Die Idee hinter seiner Entdeckung ist, dass Punkte, die sich mit Zirkel und Lineal aus zum Beispiel dem Ursprung und dem Punkt konstruieren lassen, stets bestimmte lineare oder quadratische Gleichungen erfüllen. Diese Gleichungen haben Koeffizienten, die sich aus den bisher schon konstruierten Punkten mit den vier Grundrechenarten bestimmen lassen. Hintergrund ist, dass von Linealen erzeugte Geraden durch lineare Gleichungen bzw. von Zirkeln erzeugte Kreise durch quadratische Gleichungen gegeben sind. Gauß’ Leistung bestand unter anderem darin, die für das Siebzehneck kritische Größe (mit dem Kosinus und der Kreiszahl ) durch eine Verschachtelung von Quadratwurzeln ganzer Zahlen auszudrücken, was eine zwar mühsame, aber dennoch in endlich vielen Schritten ausführbare Konstruktion ermöglicht. Dabei spielen die Eigenschaften der Fermatschen Primzahl eine entscheidende Rolle. Aus Sicht der modernen Mathematik handelt es sich hierbei um eine Anwendung der Galois-Theorie. In deren Rahmen ist es zudem von Nutzen, die Punkte der Ebene als Werte des Körpers der komplexen Zahlen auszudrücken, da dies das „Rechnen mit Punkten“ vereinfacht.

Die im Folgenden beschriebenen Konstruktionen für ein Siebzehneck sind eine Auswahl aus Lösungen mit sehr unterschiedlichen Vorgehensweisen.

Geschichte

Bearbeiten
 
Erster Eintrag im mathematischen Tagebuch von Gauß:
1796.
Principia quibus innititur sectio circuli,
ac divisibilitas eiusdem geometrica in
septemdecim partes etc. Mart. 30. Brunsv.

(Grundlagen, auf die sich die Teilung des Kreises stützt, und zwar dessen geometrische Teilbarkeit in siebzehn Teile etc. 30. März. Braunschweig)
 
Carl Friedrich Gauß 1803
 
Mitteilung der Konstruierbarkeit im Intelligenzblatt der allgem. Literatur-Zeitung (1796)

Konstruktionen zu regelmäßigen Vielecken, wie beispielsweise zu Drei-, Vier-, Fünf- und Sechsecken sowie deren Verdoppelungen sind schon seit Euklids Elementen (3. Jahrhundert v. Chr.) bekannt, aber bei z. B. Sieben- oder Neuneck war es niemandem gelungen. In den vielen folgenden Jahrhunderten festigte sich deshalb die Annahme, weitere konstruierbare Vielecke werde man nicht finden.[2] Mehr als 2000 Jahre später waren Erstaunen und Interesse groß, als der achtzehnjährige Gauß am 29. März 1796 im Intelligenzblatt der allgem. Literatur-Zeitung als Stud. der Mathematik zu Göttingen seine neue Entdeckung (vorerst ohne weitere Details) ankündigte.[3]

Am 30. März 1796, also kurz vor seinem 19. Geburtstag (30. April), machte Gauß den ersten Eintrag in seinem Mathematischen Tagesbuch. Darin beschrieb er in lateinischer Sprache und in kurzen Worten seine Entdeckung, die zur Konstruierbarkeit des Siebzehnecks führt (siehe nebenstehendes Bild).[4]

Die ausführliche Erklärung dazu folgte fünf Jahre später im vorletzten Abschnitt seines Werks Disquisitiones Arithmeticae (1801) („Untersuchungen über höhere Arithmetik“).[5] Darin zeigte und bewies Gauß u. a. die Formel für den Kosinus des Zentriwinkels, der allein mit Zirkel und Lineal konstruierbar ist. Wie der Kosinus des Zentriwinkels konstruktiv dargestellt werden kann, enthält das Werk nicht. Noch im selben Jahr, am 21. Juni, stellte Gauß in der St. Petersburger Akademie die Kurzfassung seiner Formel vor (Näheres im Abschnitt Eigenschaften).

In seinem Brief an Gerling vom 6. Januar 1819 machte Gauß auf den Druckfehler in Disquisitiones arithmeticae bezüglich seiner Formel aufmerksam:

 

 

Dies ist dieselbe Formel, die in meinen D[isquisitione] A[rithmeticae] p. 662 steht, nur ist dort durch einen Druckfehler statt des  , welches hier mit   bezeichnet ist, ein   gesetzt, oder, was dasselbe ist, die dortige Formel stellt nicht  , sondern  , d. i.   vor, also die doppelte Seite des 34-Ecks.“

Carl Friedrich Gauß[6]

Die ersten Konstruktionsbeschreibungen für ein Siebzehneck kamen Anfang des 19. Jahrhunderts. Carl Friedrich Gauß erhielt im März 1802 einen Brief von Johann Friedrich Pfaff – ehemals Lehrer und Förderer von Gauß. Pfaff zitierte darin die möglicherweise erste (veröffentlichte) Konstruktion eines Siebzehnecks aus einem Brief seines Kollegen Christoph Friedrich von Pfleiderer.[7] T. P. Stowell sandte 1818 eine Basiskonstruktion an Leybourns mathematische Zeitschrift The Mathematical Repository mit dem Anliegen, den 1806 verfassten Artikel über das Siebzehneck erneut zu drucken.[8][9] Magnus Georg Paucker fand seine Version eines Siebzehnecks im Jahr 1819. Die vielleicht bekannteste Darstellung zeigte Herbert Richmond 1893.[10] Im Jahr 1897 veröffentlichte L. Gérard ein Siebzehneck, dessen Konstruktion er nur mit einem Zirkel mithilfe des Satzes von Mohr-Mascheroni erstellte. Duane DeTemple wiederum nahm 1991 die sogenannten Carlyle-Kreise zu Hilfe, um seine Lösung des Siebzehnecks zu veröffentlichen. Am 23. Februar 2005 erschien in Göttingen, anlässlich des 150. Todestages von Carl Friedrich Gauß, ein Katalog zur Ausstellung im Alten Rathaus am Markt. Hans Vollmayr erläuterte darin eine Konstruktion des Siebzehnecks, in der als Ansatz die Kurzformel für den Kosinus des Zentriwinkels dient.[11]

Eigenschaften

Bearbeiten

Das Besondere an einem regelmäßigen Siebzehneck ist die Tatsache, dass es konstruierbar ist – es kann somit unter alleiniger Verwendung von Zirkel und Lineal (die euklidischen Werkzeuge) gezeichnet werden –, diese Konstruierbarkeit jedoch über Jahrtausende nicht nachgewiesen werden konnte. Der Nachweis gelang erst Carl Friedrich Gauß im Jahr 1796.[12] Er zeigte, dass für den Kosinus des Zentriwinkels

 

gilt.[A 1] Somit ist der Zentriwinkel auch geometrisch darstellbar und die verschiedenen Größen des Siebzehnecks wie Seitenlänge, Umfang, Inkreisradius, Diagonale über zwei Seiten und Flächeninhalt lassen sich berechnen.

Am 21. Juni 1801 stellte Gauß der St. Petersburger Akademie für seine obige Formel eine sogenannte Kurzfassung in drei Schritten vor, die sich aus der Gruppierung von Summen einzelner Kosinuswerte ergibt. Friedrich L. Bauer beschrieb sie 2009 in seinem Buch Historische Notizen zur Informatik im Kapitel Carl Friedrich Gauß, das 17-Eck und MATHEMATICA[13] ausführlich, es sei deshalb hier nur das Ergebnis der Kurzfassung erwähnt.

Mit den darin u. a. eingeführten Hilfsgrößen

  und
 

gilt somit für den Kosinus des Zentriwinkels auch:[14][13]

 
[15] Größen eines regelmäßigen Siebzehnecks mit der Seitenlänge  , dem Umkreisradius   und dem Zentriwinkel  
Seitenlänge    

 

Umfang    
Inkreisradius    
Diagonale über zwei Seiten    
Flächeninhalt    
Innenwinkel    

In der Tabelle bezeichnet   den Sinus und   den Kotangens.

Die Symmetriegruppe des Siebzehnecks ist die Diedergruppe  .

Mathematischer Hintergrund

Bearbeiten

In der mathematischen Theorie, präziser der Algebra, wird Konstruierbarkeit mit Zirkel und Lineal auf algebraische Gleichungen zurückgeführt.

Der Entdeckung der Konstruierbarkeit des Siebzehnecks durch Zirkel und Lineal von Gauß liegt eine Auflösung der Kreisteilungsgleichung   zugrunde, deren Lösungen – es handelt sich um die siebzehnten Einheitswurzeln – in der Gaußschen Zahlenebene der komplexen Zahlen ein regelmäßiges Siebzehneck mit Umkreisradius 1 bilden. Diese Gleichung kann allein durch den Gebrauch geschachtelter Quadratwurzeln gelöst werden (siehe oben für den Realteil   der Lösung  , die entgegen dem Uhrzeigersinn zur Lösung 1 am nächsten liegt). Wichtig dabei ist, dass komplexe Zahlen einerseits als Punkte einer Ebene dargestellt werden können, andererseits aber mit ihnen gerechnet werden kann. Gauß erkannte 1796 als 18-Jähriger diese Möglichkeit „[d]urch angestrengtes Nachdenken … am Morgen … (ehe ich aus dem Bette aufgestanden war)“[16] aufgrund allgemeiner zahlentheoretischer Eigenschaften von Primzahlen, in diesem Fall konkret der Primzahl 17: Die modulo einer Primzahl   gebildeten, von 0 verschiedenen Restklassen   können nämlich als Potenzen   einer geeignet gewählten Zahl  , Primitivwurzel genannt, dargestellt werden. Im Fall   kann konkret   gewählt werden, wie eine rekursive Berechnung der Potenzen zeigt:

 

verfährt man so weiter, ergeben sich der Reihe nach die Restklassen   modulo  . Sortiert man nun die von 1 verschiedenen 17. Einheitswurzeln entsprechend, das heißt in der Reihenfolge

 

so erhält man durch Teilsummation von jeder zweiten, jeder vierten, beziehungsweise jeder achten Einheitswurzel aus dieser Auflistung die sogenannten Gaußschen Perioden: zwei 8-gliedrige Perioden mit je 8 Summanden, vier 4-gliedrige Perioden mit je 4 Summanden und acht 2-gliedrige Perioden mit je 2 Summanden. Aufgrund prinzipieller Eigenschaften oder aber durch explizite Berechnung lässt sich dafür zeigen:[A 2]

  • Die beiden 8-gliedrigen Perioden sind Lösungen einer quadratischen Gleichung mit ganzen Koeffizienten.
  • Die vier 4-gliedrigen Perioden sind Lösungen von zwei quadratischen Gleichungen, deren Koeffizienten aus den 8-gliedrigen Perioden berechenbar sind.
  • Die acht 2-gliedrigen Perioden sind Lösungen von vier quadratischen Gleichungen, deren Koeffizienten aus den 4-gliedrigen Perioden berechenbar sind.

Dabei gilt für die zweigliedrige Periode zur „ersten“ Einheitswurzel  .

Der beschriebene Ansatz lässt sich analog für jede Primzahl der Form   durchführen. Fünf solche Primzahlen, die Fermatsche Primzahlen genannt werden, sind bekannt: 3, 5, 17, 257, 65537. Daher gehören auch das regelmäßige 257-Eck und das regelmäßige 65537-Eck zu den konstruierbaren Polygonen.

Geometrische Konstruktionen

Bearbeiten

Konstruktion nach Christoph Friedrich von Pfleiderer

Bearbeiten

Johann Friedrich Pfaff schrieb am 22. März 1802 aus Helmstedt einen Brief an Gauß (erstmals veröffentlicht 1917). Darin zitierte er aus einem Brief – den er von Christoph Friedrich von Pfleiderer erhalten hatte – die folgende möglicherweise erste (veröffentlichte) Konstruktion eines regelmäßigen Siebzehnecks.[7]

 
Siebzehneck nach Ch. F. von Pfleiderer (1802)
Mit Weiterführung der Konstruktion.[7] Darin ist zu beachten: Das Bestimmen des Punktes   (rot) ergibt einen sehr geringen Abstand zum Punkt  .
 
Animation der Konstruktionsskizze
Der 14. Konstruktionsschritt liefert die erste Seitenlänge   und zugleich das Ende der Darstellung nach Ch. F. von Pfleiderer. Ist Bestimmen und Verbinden der Eckpunkte jeweils ein Konstruktionsschritt, braucht das fertige Siebzehneck davon 29.

Im oben genannten Brief an Gauß erklärte J. F. Pfaff mit Pfleiderers Worten dessen Konstruktion zum Siebzehneck (freie Übersetzung):[7]

„Angesichts des Durchmessers   des Kreises wird zu seinem Ende   eine Normale gezogen, auf der zuerst  , dann   und  , beide  , abgeschnitten werden. Halbieren Sie   und   in den Punkten   und   und ziehen Sie zum Mittelpunkt   des gegebenen Kreises die Linien   und  . Von der Senkrechten   werden   und   abgeschnitten. Zur Geraden   wird zum Punkt   die Normale   gezogen und anschließend   mit   verbunden. Über   ziehen Sie einen Kreis, der die Gerade   in   schneidet. Schließlich wird um den Mittelpunkt   mit Radius   ein Kreis beschrieben, der den Kreis um   bei   schneidet.   sei die Seite eines regelmäßigen Polygons mit 17 Seiten, das in den gegebenen Kreis eingeschrieben werden soll.“

Ch. F. von Pfleiderer: Carl Friedrich Gauß Werke, Band 10 (1917), IV. Über das regelmäßige Siebzehneck.[7]

Konstruktion nach T. P. Stowell

Bearbeiten

Das Finden der folgenden Basiskonstruktion eines regelmäßigen Siebzehnecks aus dem Jahr 1818 ist W. E. Heal aus Wheeling in Indiana zu verdanken. Er stellte in der mathematischen Zeitschrift The Analyst im März 1877 zur Konstruktion der Polygone 17-Eck und 257-Eck allein mit Zirkel und Lineal, die Frage: „Wie wird dies bewiesen?“ [17] J. E. Hendricks, Herausgeber von The Analyst, beantwortete in der Ausgabe vom Mai 1877, Nr. 3 seine Frage, darin zitierte er auch T. P. Stowell aus Rochester, N. Y.: „Vielleicht würde es einige Ihrer Leser interessieren, einen in [Thomas Leybourns] Mathematical Repository (Band I, 2. Folge) 1806 veröffentlichten Artikel erneut zu drucken.“[9] Da der Platz für eine vollständige Veröffentlichung des Artikels aus der angegebenen Quelle nicht zur Verfügung stand, wurde in The Analyst nur ein Ausschnitt davon sowie die von T. P. Stowell gesendete und Leybourns Mathematical Repository 1818 zugeschriebene Konstruktion eines Polygons mit 17 Seiten eingefügt.[8][A 3]

 
Siebzehneck nach T. P. Stowell (1818)
Mit Weiterführung der Basiskonstruktion[8] aus dem Jahr 1818 sowie Ergänzung von   als mittlerer Proportionale[18] von   und   bzw.  
 
Animation der Konstruktionsskizze
Der 14. Konstruktionsschritt liefert die erste Seitenlänge   und zugleich das Ende der Basiskonstruktion nach T. P. Stowell. Ist Bestimmen und Verbinden der Eckpunkte jeweils ein Konstruktionsschritt, braucht das fertige Siebzehneck davon 29.

Konstruktionsbeschreibung von T. P. Stowell (Übersetzung):

„ZUR KONSTRUKTION eines regelmäßigen Polygons von siebzehn Seiten im Kreis.
Zeichnen Sie den Radius   rechtwinklig zum Durchmesser  : Für   nehmen Sie die Hälfte von   und für   den achten Teil vom Radius [ ]: Nehmen Sie für   und für   jeweils gleich  , für   gleich   und   gleich  ; für   nehmen Sie die mittlere Proportionale zwischen   und  [A 4] und ziehen Sie   durch   parallel zu  ,   trifft in   auf den über   beschriebenen Halbkreis;[A 5] zeichnen Sie   parallel zu  ,   schneidet den gegebenen Kreis in   – der Bogen   ergibt den siebzehnten Teil des gesamten Umfangs.“

T. P. Stowell: The Analyst. Band IV. Mai 1877. No. 3.[8]

Konstruktion nach Georg Paucker

Bearbeiten

Magnus Georg Paucker legte 1819 seine geometrische Konstruktionsanleitung für das Siebzehneck der Kurländischen Gesellschaft für Literatur und Kunst vor, wo sie 1822 veröffentlicht wurde.[19] Er schreibt dazu in der Einleitung seines Artikels:

„Ein merkwürdiges Beyspiel von der Schwierigkeit, neue Sätze in der Geometrie zu entdecken, liefert die Aufgabe, reguläre Polygone, ohne mechanische Eintheilung des Quadranten oder Beyhülfe eines Winkelmessers, in einen Kreis zu zeichnen.“

Magnus Georg Paucker: Geometrische Verzeichnung des regelmäßigen Siebzehn-Ecks und Zweyhundertsiebenundfunfzig-Ecks in den Kreis.[20]
 
Konstruktionsskizze nach Magnus Georg Paucker (1819)
Mit Weiterführung bis zum fertigen Siebzehneck, Schritt 17: Abtragen der Diagonalen über zwei Seiten. Ist Bestimmen und Verbinden der Eckpunkte jeweils ein Konstruktionsschritt, braucht das fertige Siebzehneck davon 31.
 
Animation der Konstruktionsskizze
Der 16. Konstruktionsschritt liefert die erste Seitenlänge   auf dem Umkreis. Ist Bestimmen und Verbinden der Eckpunkte jeweils ein Konstruktionsschritt, braucht das fertige Siebzehneck davon 30.

Die folgende Konstruktionsanleitung enthält die Konstruktion nach Magnus Georg Paucker[21] sowie deren Weiterführung bis zum fertigen Siebzehneck. Die in der Originalzeichnung von Paucker enthaltenen Radien und die meisten Diagonalen dienen der Darstellung von in seiner Originalbeschreibung stehenden Formeln und sind für die geometrische Konstruktion nicht erforderlich. Sie wurden hier weggelassen.

  1. Zeichne auf dem Durchmesser   um den Mittelpunkt   den Umkreis des werdenden 17-Ecks.
  2. Errichte den Durchmesser   senkrecht zu  .
  3. Halbiere den Radius   in  .
  4. Verlängere   ab  .
  5. Trage die Strecke   ab   auf die Verlängerung ab, Schnittpunkt ist  .
  6. Halbiere   in  .
  7. Halbiere   in  .
  8. Trage die Strecke   ab   auf die Verlängerung ab, Schnittpunkt ist  .
  9. Errichte den Radius   senkrecht zu Durchmesser  .
  10. Halbiere   in  .
  11. Trage die Strecke   ab   auf   ab, Schnittpunkt ist  .
  12. Konstruiere den Halbkreis über  .
  13. Konstruiere den Halbkreis über  , Schnittpunkt mit   ist  .
  14. Zeichne die Parallele zu   ab  , Schnittpunkt mit Halbkreis über   ist  .
  15. Fälle das Lot von L auf  , Fußpunkt ist  . Es ist   die Seite des 34-Ecks.
Von hier aus zwei Möglichkeiten als Beispiele:
  1. Ziehe einen Halbkreis um   mit dem Radius  , damit ergibt sich auf dem Umkreis der Punkt   und ein z. B. mit   bezeichneter Punkt. Die Strecke   ist die gesuchte Seite des 17-Ecks.
  2.  bis 30. Trage die Seite   vierzehnmal auf dem Umkreis ab und verbinde die so gefundenen Punkte zu einem vollständigen 17-Eck.
oder:
  1. Es gilt auch  , demzufolge trage   auf dem Umfang in Richtung Punkt   ab und du erhältst Punkt  .
  2. Trage  , also die Diagonale über zwei Seiten, von   beginnend weitere Male auf dem Umfang ab, bis alle Ecken markiert sind und verbinde jeweils abschließend die so gefundenen Punkte zu einem vollständigen 17-Eck.

Konstruktion nach Herbert Richmond

Bearbeiten

Im Jahr 1825 legte Johannes Erchinger eine Konstruktion der Akademie der Wissenschaften zu Göttingen vor, die Gauß daraufhin in den Göttingischen Gelehrten Anzeigen besprach. Eine zeichnerische Darstellung dieses Siebzehnecks ist nicht überliefert.[22][A 6] Die folgende einfachere und bekannteste Konstruktion stammt von Herbert William Richmond aus dem Jahr 1893.[23]

In der Konstruktionsbeschreibung lässt es Richmond offen, auf welche Art und Weise schließlich die Seitenlänge des Siebzehnecks zu finden ist. Es gibt dafür drei Möglichkeiten. Für die ersten beiden nimmt man entweder die Länge der Sehne   oder   in den Zirkel und trägt sie auf dem Umkreis so oft ab, bis alle Eckpunkte gegeben sind.[23] Die dritte Möglichkeit wäre: Man halbiert den Kreisbogen   mithilfe der Mittelsenkrechten, erhält so den Eckpunkt   und trägt abschließend die Seitenlänge   oder   dreizehnmal auf dem Umkreis ab. Die folgende Konstruktion nutzt dafür die Sehnenlänge (Diagonale)  .

 
Siebzehneck nach Herbert Richmond (1893)
Mit Weiterführung der Konstruktion. Dabei ist zu beachten: Das Bestimmen des Punktes   ergibt einen sehr geringen Abstand zum Mittelpunkt des Halbkreises über  .
 
Animation der Konstruktionsskizze
Der 27. Konstruktionsschritt liefert den letzten Eckpunkt  . Ist Bestimmen und Verbinden der Eckpunkte jeweils ein Konstruktionsschritt, braucht das fertige Siebzehneck davon 27.

Konstruktionsbeschreibung

  1. Ziehen des Umkreises mit beliebigem Radius um den Mittelpunkt  .
  2. Zeichnen eines Durchmessers durch den Mittelpunkt   Schnittpunkt mit Umkreis ist  , später zusätzlich mit   bezeichnet.
  3. Errichten eines Radius senkrecht zu   auf   bis zum Umkreis; Schnittpunkt mit Umkreis ist  .
  4. Halbieren des Radius  .
  5. Nochmaliges Halbieren ergibt ein Viertel des Radius   im Punkt  ;   liegt näher an  ; Verbinden des Punktes   mit  .
  6. Halbieren des Winkels  .
  7. Nochmaliges Halbieren des Winkels ergibt im Punkt   ein Viertel des Winkels  ;   liegt näher an  .
  8. Errichten einer Senkrechten auf   mit Fußpunkt  .
  9. Halbierung des  -Winkels; Schnittpunkt mit Durchmesser ist   und Winkel   ist  .
  10. Konstruktion des Thaleskreises über  ; Schnittpunkt mit   ist  .
  11. Ziehen des Halbkreises um den Mittelpunkt   mit dem Radius  ; Schnittpunkte mit dem Durchmesser sind   und   (dabei liegt   sehr nahe beim Mittelpunkt des Thaleskreises über  ).
  12. Errichten der Senkrechten auf die Mittelachse ab  ; Schnittpunkt mit dem Umkreis ist der Eckpunkt   des Siebzehnecks; der Kreisbogen   ist somit   des Umkreisumfanges.
  13. Errichten der Senkrechten auf die Mittelachse ab  ; Schnittpunkt mit dem Umkreis ist der Eckpunkt  ; der Kreisbogen   ist somit   des Umkreisumfanges.
  14.  bis 27. Ein vierzehnmaliges Abtragen der Diagonale   auf dem Umkreis, ab dem Eckpunkt   gegen den Uhrzeigersinn, ergibt der Reihe nach die Eckpunkte   und  ; das abschließende Verbinden der so gefundenen Punkte  , …,   vervollständigt das 17-Eck.

Konstruktion nach L. Gérard

Bearbeiten

Pietro Ermenegildo Daniele, ein italienischer Mathematiker (1875–1949), beschreibt im sechsten Artikel seines Werkes Über die Konstruktionen des regulären Siebzehnecks eine Konstruktion nach L. Gérard[24] mithilfe des Satzes von Mohr-Mascheroni.

Gérards Siebzehneck – allein mit einem Zirkel konstruiert – wurde in Mathematische Annalen (48. Band) im Jahr 1897 veröffentlicht.[25][26]

  • Um die Erklärungen von Daniele zum mathematischen Hintergrund (§ 4. Die Konstruktion von Gérard, ab Seite 183) nachvollziehen zu können, wurden die Bezeichnungen der Schnittpunkte übernommen. In der folgenden Konstruktion entsteht jeder Schnittpunkt durch das Kreuzen zweier Kreise. Für eine bessere Übersichtlichkeit ersetzen kurze Kreisbögen die entsprechenden Kreise (siehe Animation).
 
Siebzehneck nach L. Gérard (1897)
Mithilfe des Satzes von Mohr-Mascheroni ohne Lineal allein mit Zirkel konstruiert.
 
Animation der Konstruktionsskizze als Animation
Drei Eckpunkte   und   sind mit dem 19. Konstruktionsschritt gefunden. Ein fertiges Siebzehneck bedarf deren 33.

Konstruktionsbeschreibung (in Klammer die Bildnummer):

1(1) Es beginnt mit einem Kreis mit beliebigem Radius   um den Mittelpunkt  .
1(2), (3), (4) Nun trägt man im Uhrzeigersinn dreimal den Radius   auf den Umkreis des entstehenden Siebzehnecks auf, dabei ergeben sich die Schnittpunkte   sowie der erste Eckpunkt  

Es folgt die Ermittlung des Mittelpunktes   des Radius  .

1(5) Zwei Kreisbögen um   mit dem Radius   und zwei Kreisbögen um   mit dem Radius   erzeugen die Schnittpunkte   und  .
1(6) Je ein Kreisbogen um   und   mit Radius   liefert den Schnittpunkt  

Es geht weiter mit dem Bestimmen der noch erforderlichen Schnittpunkte   bis  .

1(7)   je ein Kreisbogen um   und   mit Radius  
1(8)   und   zwei Kreisbögen um   mit Radius  
1(9)   und   zwei Kreisbögen um   mit Radius  
(10)   und   je einen Kreisbogen um   und   mit Radius  
(11), (12)   und   je einen Kreisbogen um   und   mit Radius   sowie zwei Kreisbögen um   mit Radius  
(13)   je einen Kreisbogen um   und   mit Radius  
(14), (15)   und   je einen Kreisbogen um   und   mit Radius   sowie zwei Kreisbögen um   mit Radius  
(16)   je ein Kreisbogen um   und   mit Radius  
(17)   und   je zwei Kreisbögen um   und   mit Radius  
(18)   je ein Kreisbogen um   und   mit Radius  
(19) Jetzt bedarf es nur noch zweier Kreisbögen um   mit Radius  , um zwei weitere Eckpunkte   und   zu erhalten.
Die Abstände   und   entsprechen jeweils einer Seitenlänge des entstehenden Siebzehnecks.
(20) bis (33) Abschließend liefert das vierzehnmalige Abtragen der Seitenlänge   auf dem Umkreis ein allein mit dem Zirkel erstelltes regelmäßiges Siebzehneck.

Konstruktion nach Duane DeTemple

Bearbeiten

Duane W. DeTemple veröffentlichte im Jahr 1991 in der mathematischen Zeitschrift The American Mathematical Monthly eine Konstruktion des Siebzehnecks. Für seine Lösung verwendete er vier Carlyle-Kreise; benannt nach dem Historiker Thomas Carlyle (1795–1881). Der junge Schotte Carlyle lehrte Mathematik, bevor er sich der Literatur zuwandte. Damals fand er diese elegante geometrische Methode für die quadratische Gleichung und folglich auch für die Polygone Fünfeck, Siebzehneck, 257-Eck und 65537-Eck.[27]

 
Siebzehneck nach Duane W. DeTemple (1991) mit den vier Carlyle-Kreisen: Cc1, Cc2, Cc3 und Cc4. Mit Weiterführung der Konstruktion bis zum fertigen Siebzehneck.
 
Animation der Konstruktionsskizze, am Ende 20 s Pause.
Der 16. Konstruktionsschritt liefert den ersten Eckpunkt  . Ist Bestimmen und Verbinden der Eckpunkte jeweils ein Konstruktionsschritt, braucht das fertige Siebzehneck davon 30.
Video

Konstruktionsbeschreibung:

  1. Zeichne die  -Achse und setze darauf den Punkt  
  2. Zeichne um   den Einheitskreis   mit Radius   Schnittpunkte mit   sind   und  
  3. Konstruiere die  -Achse vom Umkreis   des entstehenden 17-Ecks, Schnittpunkt mit   ist  
  4. Halbiere den Radius   in  
  5. Ziehe den Kreisbogen   mit dem Radius   um  
  6. Errichte eine Senkrechte auf dem Radius   ab   Schnittpunkt mit   ist  
  7. Ziehe den Carlyle-Kreisbogen   um   durch   so, dass er die  -Achse vom Umkreis   zweimal trifft, Schnittpunkte sind   und  
  8. Halbiere die Strecke   in  
  9. Halbiere die Strecke   in  
  10. Ziehe den Carlyle-Kreisbogen   um   ab   bis auf die  -Achse, Schnittpunkt ist  
  11. Ziehe den Carlyle-Kreisbogen   um   ab   bis auf die  -Achse, Schnittpunkt ist  
  12. Trage   von Punkt   aus auf der Geraden   ab. Du erhältst Punkt  
  13. Verbinde   mit  
  14. Halbiere die Strecke   in  
  15. Ziehe den Carlyle-Kreisbogen   um   ab   bis auf die  -Achse, Schnittpunkt ist  
  16. Ziehe den Kreisbogen   mit dem Radius   um   Schnittpunkte mit dem Umkreis   sind die Eckpunkte   und   somit ist die Strecke   die erste Seite des gesuchten 17-Ecks.
  17. Ein vierzehnmaliges Abtragen der Strecke   auf dem Umkreis   ab dem Eckpunkt   gegen den Uhrzeigersinn, ergibt der Reihe nach die Eckpunkte   bis   Abschließend verbinde die so gefundenen Punkte   und   dann ist das 17-Eck fertiggestellt.

Konstruktion mithilfe der gaußschen Kurzfassung der Formel

Bearbeiten

Anlässlich der 150. Wiederkehr des Todestages von Carl Friedrich Gauß am 23. Februar 2005 gab es in Göttingen im Alten Rathaus am Markt vom 23. Februar bis zum 15. Mai 2005 die Ausstellung „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Carl Friedrich Gauß in Göttingen. Der Katalog zu dieser Ausstellung, herausgegeben von Elmar Mittler, enthält Aufsätze in diversen Rubriken. Im Abschnitt Mathematik ist der Beitrag 17 gleiche Ecken und Kanten mit Zirkel und Lineal von Hans Vollmayr zu finden.[11] Die im Folgenden dargestellte Konstruktion ist prinzipiell den Kapiteln Das Siebzehneck: die Rechnung[28] und Das Siebzehneck: die Zeichnung[29] entnommen.

Die Kurzfassung der Formel für den Kosinus des Zentriwinkels (siehe Eigenschaften),

 

erleichtert eine Konstruktion mit Zirkel und Lineal, die mithilfe der Hilfsgrößen, quasi Schritt für Schritt, den Kosinus des Zentriwinkels liefert. Ein möglicher Lösungsweg ist, die Hilfsgrößen zeichnerisch separat in drei Bildern (1–3) mit elementaren algebraischen Operationen darzustellen. Dies macht die Konstruktion übersichtlich und allgemein gut nachvollziehbar.

Konstruktion der Hilfsgrößen p und q sowie des Quadrats

Bearbeiten
 
Bild (1): Konstruktion der Hilfsgrößen   und   und des Quadrats  

Darin gilt   und  

  1. Ab Punkt   eine Halbgerade ziehen, darauf   mit   Lot auf Strecke   in   errichten und   ab   auf Lot übertragen ergibt  
  2. Lot auf   in   mit Länge   ergibt   anschließend Halbgerade von   durch   ergibt  
  3. Kreis um   durch   ergibt   auf Halbgerade,   ist Hilfsgröße  
  4. Viertelkreis um   durch   ergibt   und   nun   mit   verbinden, anschließende Parallele zu   ab   ergibt   sowie mit   das Quadrat  
  5. Zu   zweimal die Länge   addieren, ergibt   und   anschließend   in   halbieren und um   über   Halbkreis ziehen.
  6. Lot auf   in   bis Halbkreis ergibt   anschließend zu   ab   Hilfsgröße   addieren, ergibt  
  7.   in   halbieren ergibt Hilfsgröße  
  8. Viertelkreis um   ab   ergibt   anschließend Viertelkreis um   ab   ergibt  
  9.   mit   verbinden, anschließende Parallele zu   ab   ergibt   sowie mit   das Quadrat  

Konstruktion der Hilfsgrößen p’ und

Bearbeiten
 
Bild (2): Konstruktion der Hilfsgrößen   und  

Darin gilt   sowie  

  1. Ab Punkt   eine Halbgerade ziehen, darauf   mit   Lot auf Strecke   in   errichten und   ab   auf Lot übertragen ergibt  
  2. Lot auf   in   mit der Länge   ergibt   anschließend Halbgerade von   durch   ergibt  
  3. Kreis um   durch   ergibt   auf Halbgerade,   ist Hilfsgröße  
  4. Viertelkreis um   durch   ergibt   und   nun   mit   verbinden, anschließende Parallele zu   ab   ergibt   sowie mit   das Quadrat  
  5. Zu   zweimal die Länge   addieren, ergibt   und   anschließend   in   halbieren und um   über   Halbkreis ziehen.
  6. Lot auf   in   bis Halbkreis ergibt   anschließend von   ab   Hilfsgröße   subtrahieren, ergibt  
  7.   in   halbieren ergibt mit   Hilfsgröße  

Konstruktion der Wurzel aus 2q’ und des Kosinus des Zentriwinkels μ

Bearbeiten
 
Bild (3): Siebzehneck nach Hans Vollmayr (2005) mit abschließendem Teil 3: Konstruktion der Wurzel aus   und des Kosinus des Zentriwinkels  
  1. Ab Punkt   eine Halbgerade ziehen, darauf   aus Bild (1) übertragen ergibt   anschließend Länge   aus Bild (1) ab   übertragen ergibt  
  2. Von   die Länge   aus Bild (2) ab Punkt   subtrahieren ergibt   anschließend   in   halbieren und um   über   Halbkreis ziehen.
  3. Lot auf   in   bis Halbkreis ergibt  
  4. Strecke   einzeichnen und dazu Hilfsgröße   aus Bild (1) ab   addieren ergibt   anschließend   in   halbieren, die Strecke   ist der Kosinus   des Zentriwinkels   des Siebzehnecks.
  5. Um Punkt   Umkreis mit dem Radius   (z. B. mit Strecke  ) ziehen, anschließend Radius einzeichnen, ergibt  
  6.   auf   ab   übertragen, ergibt  
  7. Lot auf   in   bis Umkreis ergibt ersten Eckpunkt   des entstehenden Siebzehnecks.
  8.   fünfzehnmal gegen den Uhrzeigersinn auf dem Umkreis abtragen und abschließend die benachbarten Ecken verbinden. Somit ist das regelmäßige Siebzehneck fertiggestellt.

Grundsätzlich wäre es auch möglich, den von Gauß zuerst gefundenen (langen) Ausdruck als konstruierte Strecke darzustellen. In der einschlägigen Literatur wird aber keine derartige Lösung beschrieben.

Vorkommen

Bearbeiten
 
Skizze zum Messingkopfstück des Pedellstabes, Insigne der Universität Braunschweig

Unter den Insignien der Universität Braunschweig sind auch zwei 1952/53 erworbene Pedellstäbe für das Zeremoniell. Einer davon zeigt auf dem Messingkopfstück, in einer kreisrunden Scheibe, einen regelmäßigen Siebzehnstrahlstern.[30] Der zweite weist mittels Zahnkranz, Winkel und Zirkel auf die Konstruierbarkeit des Siebzehnecks allein mit Zirkel und Lineal hin. Beide Pedellstäbe erinnern damit an die von Carl Friedrich Gauß gemachte – oben beschriebene – Entdeckung zum Siebzehneck.[31]

In den Jahren 1884 bis 1904 erregte das auf einem siebzehneckigen Grundriss errichtete Sedan-Panorama in Berlin großes Aufsehen beim Publikum.[32]

Anlässlich des 200. Geburtstags von C. F. Gauß erschien 1977 in der DDR eine 20-Pfennig-Briefmarke. Sie zeigt ein Porträt des jungen Gauß, so wie ihn der Maler Johann Christian August Schwartz 1803 in einem Pastell dargestellt hatte. Daneben sind Zirkel, Zeichendreieck (Lineal) und eine weiße Kreisfläche zu sehen. Erst bei genauerem Hinsehen sind die siebzehn Punkte auf der Kreislinie erkennbar. Alles zusammen weist darauf hin, dass Gauß es war, der die Konstruierbarkeit des regelmäßigen Siebzehnecks fand.[33]

In der Leipziger Mädlerpassage ist in der Kuppel der Rotunde eine Fensterrose eingelassen, deren Umriss einem Siebzehneck gleicht. Sie misst etwa zwölf Meter im Durchmesser und befindet sich ungefähr auf fünfzehn Meter Höhe.[34] Errichtet wurde die Fensterrose von dem Architekten Theodor Kösser innerhalb seines Projektes Mädlerpassage (1912–1914).

In Braunschweig steht vor einem kleinen grünen Hügel, genannt Gaußberg, das 1880 errichtete Gauß-Denkmal.[35] Auf der Westseite (Gauß’ rechter Seite) ist auf dem Sockel ein goldfarbener regelmäßiger Siebzehnstrahlstern eingelassen.

 
20-Pf.-Briefmarke DDR 1977, anlässlich des 200. Geburtstags von C. F. Gauß
 
Fensterrose in der Mädlerpassage, Leipzig
 
Gauß-Denkmal Braunschweig, regelmäßiger Siebzehnstrahlstern

Regelmäßige überschlagene Siebzehnecke

Bearbeiten

Ein regelmäßiges überschlagenes Siebzehneck ergibt sich, wenn beim Verbinden der siebzehn Eckpunkte jedes Mal mindestens einer übersprungen wird und die somit erzeugten Sehnen gleich lang sind. Notiert werden solche regelmäßigen Sterne mit Schläfli-Symbolen  , wobei   die Anzahl der Eckpunkte angibt und jeder  -te Punkt verbunden wird.

In der folgenden Galerie sind die sieben möglichen regelmäßigen Siebzehnstrahlsterne, auch Heptadekagramme genannt, dargestellt.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
Bearbeiten
Wikibooks: Siebzehneck – Lern- und Lehrmaterialien
Commons: Regelmäßiges Siebzehneck – Sammlung von Bildern
Wiktionary: Siebzehneck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wiktionary: Heptadekagramm – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Anmerkungen

Bearbeiten
  1. Vgl. Folge A210644 in OEIS.
  2. Details siehe Bewersdorff, S. 92–96.
  3. In Leybourns Mathematical Repository 1806 ist kein Hinweis auf eine Abbildung (Fig.) der Konstruktion auf z. B. Plate II 27 to 51 (zwischen der Seite 80 und 81). Folgt man dem Eintrag in The Analyst 1877, so stammt T. P. Stowells Konstruktion spätestens aus dem Jahr 1818.
  4. Hierzu ist   gleich   und   die Hälfte von  , der Halbkreis über   erzeugt den Schnittpunkt  ,   ist die mittlere Proportionale von   und  .
  5. Mittelpunkt ist  .
  6. Siehe hierzu die Frage auf der Diskussionsseite: Konstruktion des Siebzehnecks nach Erchinger?

Einzelnachweise

Bearbeiten
  1. Wilhelm Pape, Max Sengebusch (Bearb.): Handwörterbuch der griechischen Sprache. 3. Auflage, 6. Abdruck. Vieweg & Sohn, Braunschweig 1914 (zeno.org [abgerufen am 2. Juli 2024]).
  2. Manfred Denker, Samuel James Patterson: Mathematik. Gauß – der geniale Mathematiker. Ausstellungskatalog: „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Hrsg.: Elmar Mittler. Univerlag, Göttingen 2005, ISBN 3-930457-72-5, S. 58, Das Siebzehneck (uni-goettingen.de [PDF; 2,1 MB; abgerufen am 19. April 2024]).
  3. Carl Friedrich Gauß: Intelligenzblatt der allgem. Literatur-Zeitung. Nr. 66, 1. Juni 1796, III. Neue Entdeckungen, Sp. 544 (google.de [abgerufen am 19. April 2024]). Titelblatt.
  4. Manfred Denker, Samuel James Patterson: Mathematik. Gauß – der geniale Mathematiker. Ausstellungskatalog: „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Hrsg.: Elmar Mittler. Univerlag, Göttingen 2005, ISBN 3-930457-72-5, S. 56, Das Mathematische Tagebuch (uni-goettingen.de [PDF; 2,1 MB; abgerufen am 19. April 2024]).
  5. Carl Friedrich Gauß: Disquisitiones arithmeticae. Hrsg.: Gerh. Fleischer, Jun. Leipzig 1801, Kap. 7, S. 662, Abschnitt 365 (Latein, archive.org [abgerufen am 19. April 2024]).
  6. Carl Friedrich Gauß: Brief an Gerling, vom 6. Januar 1819 in Schriften der Gesellschaft zur Beförderung der gesamten Naturwissenschaften zu Marburg, 15. Band … Otto Elsner Verlagsgesellschaft m. b. H., Berlin 1927. Abgerufen am 19. April 2024.
  7. a b c d e Carl Friedrich Gauß: Carl Friedrich Gauß Werke. Kleinere Veröffentlichungen. Hrsg.: Königliche Gesellschaft der Wissenschaften. Zehnter Band, erste Abteilung. B. G. Teubner, Leipzig 1917, IV. Über das regelmäßige Siebzehneck. 1. Pfaff an Gauß. Helmstedt, 22. März 1802., S. 120–121 (uni-goettingen.de [abgerufen am 9. Mai 2024]).
  8. a b c d J. E. Hendricks: The Analyst. In: J. E. Hendricks, A. M. (Hrsg.): Mathematische Zeitschrift. Band IV, Nr. 3. Mills & Co, Des Moines, Iowa Mai 1877, Solution of problems in number two, S. 94–95, Answer to Mr. Heal’s query (see page 64) (englisch, Antwort auf die Frage von Herrn W. E. Heal (siehe Seite 64) [abgerufen am 19. April 2024]).
  9. a b Thomas Leybourn: New series of the Mathematical Repository. In: Thomas Leybourn (Hrsg.): Mathematische Zeitschrift. Band I, Nr. 25. W. Glendinning, London 1806, Notices Relating to Mathematics, S. 77–78, I. Regular Polygon of Seventeen Sides (englisch, 1. Regelmäßiges Polygon mit siebzehn Seiten [abgerufen am 21. April 2024]).
  10. Herbert Schröder: Wege zur Analysis. 1. Reelle Zahlen. Springer-Verlag, Berlin/Heidelberg 2001, ISBN 978-3-540-42032-3, S. 10 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 21. April 2024]).
  11. a b Hans Vollmayr: 17 gleiche Ecken und Kanten mit Zirkel und Lineal. In: Göttinger Bibliotheksschriften 30. „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Carl Friedrich Gauß in Göttingen. Hrsg.: Elmar Mittler. Niedersächsische Staats- und Universitätsbibliothek, Göttingen 2005, ISBN 3-930457-72-5, S. 90 ff. (17 gleiche Ecken und Kanten mit Zirkel und Lineal [PDF; abgerufen am 19. April 2024]).
  12. H. Maser: Die Teilungen des Kreises, … Artikel 365. In: Carl Friedrich Gauss’ Untersuchungen über höhere Arithmetik. Verlag von Julius Springer, Berlin 1889; Göttinger Digitalisierungszentrum, Universität Göttingen, S. 446 ff., abgerufen am 19. April 2024.
  13. a b Friedrich L. Bauer: Carl Friedrich Gauß, das 17-Eck und MATHEMATICA, Die Methode der Gruppierung. In: Historische Notizen zur Informatik. Hrsg.: Springer Link. Springer, Berlin, Heidelberg 2009, ISBN 978-3-540-85789-1, S. 407–414 (Preview [abgerufen am 18. Mai 2024]).
  14. Hans Vollmayr: 17 gleiche Ecken und Kanten mit Zirkel und Lineal. In: Göttinger Bibliotheksschriften 30. „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Carl Friedrich Gauß in Göttingen. Hrsg.: Elmar Mittler. Niedersächsische Staats- und Universitätsbibliothek, Göttingen 2005, ISBN 3-930457-72-5, S. 103 (Das Siebzehneck: die Zeichnung → „…, so dass uns am Schluss nur noch die Gleichung … bleibt.“ [PDF; abgerufen am 19. April 2024]).
  15. Lennart Råde, Bertil Westergren, Übersetzer: Peter Vachenauer: Springers Mathematische Formeln, Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler. 3 Geometrie und Trigonometrie, Reguläres Polygon (n-Ecken). 3. Auflage. Springer, Berlin 2000, ISBN 978-3-540-67505-1, S. 70.
  16. Zitiert nach Jörg Bewersdorff: Algebra für Einsteiger. Von der Gleichungsauflösung zur Galois-Theorie. Springer Spektrum, 6. Auflage 2019, ISBN 978-3-658-26151-1, S. 90, doi:10.1007/978-3-658-26152-8_7.
  17. W. E. Heal: The Analyst. In: J. E. Hendricks, A. M. (Hrsg.): Mathematische Zeitschrift. Band IV, Nr. 2. Mills & Co, Des Moines, Iowa März 1877, Problems, S. 64, Query, by W. E. Heal, Wheeling, Indiana (englisch, Frage von Herrn W. E. Heal aus Wheeling, Indiana [abgerufen am 19. April 2024]).
  18. Universität Magdeburg: A.14 Mittelwerte. Mittlere Proportionale. Seite 2, Punkt b) und Bild b). (PDF), abgerufen am 19. April 2024.
  19. Magnus Georg Paucker: Geometrische Verzeichnung des regelmäßigen Siebzehn-Ecks und Zweyhundertsiebenundfunfzig-Ecks in den Kreis. In: Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst. Band 2, 1822, S. 160–219 (Beschreibung S. 187–188 [abgerufen am 19. April 2024]).
  20. Magnus Georg Paucker: Geometrische Verzeichnung des regelmäßigen Siebzehn-Ecks und Zweyhundertsiebenundfunfzig-Ecks in den Kreis. In: Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst. Band 2, 1822, S. 161 (Einleitung, [abgerufen am 4. Mai 2024]).
  21. Magnus Georg Paucker: Geometrische Verzeichnung des regelmäßigen Siebzehn-Ecks und Zweyhundertsiebenundfunfzig-Ecks in den Kreis. In: Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst. Band 2, 1822 (Tafel I, Fig. 12 [abgerufen am 19. April 2024]).
  22. Carl Friedrich Gauß: Göttingische Gelehrte Anzeigen. Band 87, Nr. 203, 19. Dezember 1825, S. 2025–2027 (books.google.de [abgerufen am 19. April 2024]).
  23. a b Herbert W. Richmond: A Construction for a regular polygon of seventeen sides. In: The Quarterly Journal of Pure and Applied Mathematics. Band 26, 1893, S. 206–207 (Beschreibung und Abbildung Fig. 6 [abgerufen am 19. April 2024]).
  24. Ermenegildo Daniele: Über die Konstruktionen des regulären Siebzehnecks. (PDF) § 4. Die Konstruktion von Gérard. In: RCIN.org.pl. S. 171 ff. bzw. 183, Konstruktion S. 184, archiviert vom Original am 9. Oktober 2022; abgerufen am 5. Mai 2024.
  25. Felix Klein, Walther Dyck, Adolph Mayer: Mathematische Annalen. Inhalt des achtundvierzigsten Bandes. In: gdz.sub.uni-goettingen.de. Göttinger Digitalisierungszentrum, 1897, abgerufen am 19. April 2024.
  26. L. Gérard: Mathematische Annalen. Construction du polygone régulier de 17 côtés au moyen du seul compas. In: gdz.sub.uni-goettingen.de. Göttinger Digitalisierungszentrum, 8. Juli 1896, S. 390–392, abgerufen am 19. April 2024.
  27. Duane W. DeTemple: Carlyle Circles and the Lemoine Simplicity of Polygon Constructions. (Memento vom 11. August 2011 im Internet Archive). In: The American Mathematical Monthly. Band 98, No. 2 (Feb. 1991), S. 101–104 (JSTOR:2323939), abgerufen am 19. April 2024.
  28. Hans Vollmayr: 17 gleiche Ecken und Kanten mit Zirkel und Lineal. In: Göttinger Bibliotheksschriften 30. „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Carl Friedrich Gauß in Göttingen. Hrsg.: Elmar Mittler. Niedersächsische Staats- und Universitätsbibliothek, Göttingen 2005, ISBN 3-930457-72-5, S. 100–102 (Das Siebzehneck: die Rechnung [PDF; abgerufen am 19. April 2024]).
  29. Hans Vollmayr: 17 gleiche Ecken und Kanten mit Zirkel und Lineal. In: Göttinger Bibliotheksschriften 30. „Wie der Blitz einschlägt, hat sich das Räthsel gelöst“. Carl Friedrich Gauß in Göttingen. Hrsg.: Elmar Mittler. Niedersächsische Staats- und Universitätsbibliothek, Göttingen 2005, ISBN 3-930457-72-5, S. 102–103 (Das Siebzehneck: die Zeichnung [PDF; abgerufen am 19. April 2024]).
  30. Bianca Loschinsky: Bild des Monats: Pedellstäbe fürs Zeremoniell. In: magazin.tu-braunschweig.de. 1. April 2018, abgerufen am 13. Mai 2024.
  31. Tanja Wolf, Michael Wrehde: Die Pedellstäbe der Technischen Hochschule Braunschweig. In: uniquellen.hypotheses.org. 30. Juli 2021, abgerufen am 13. Mai 2024.
  32. Alexander Glintschert: Das Sedan-Panorama. In: anderes-berlin.de. 16. Dezember 2016, abgerufen am 4. August 2024.
  33. H.-J. Vollrath: Zum Gedenken an Carl Friedrich Gauß. Briefmarken. In: didaktik.mathematik.uni-wuerzburg.de. Abgerufen am 16. Mai 2024.
  34. Anke Beesch: Architektur. Historische Baukunst mitten in Leipzig. In: maedlerpassage.de. Mädler-Passage Leipzig, abgerufen am 19. April 2024.
  35. Manuela Wenderoth: Carl Friedrich Gauß. In: braunschweig.de. 19. November 2015, abgerufen am 13. Mai 2024.