iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://de.m.wikipedia.org/wiki/Jensensche_Formel
Jensensche Formel – Wikipedia

Jensensche Formel

mathematischer Satz

In der Mathematik gibt die Jensensche Formel eine Formel für die Integration einer analytischen Funktion über den Rand eines Kreises. Die Formel ist nach dem dänischen Mathematiker Johan Ludwig Jensen benannt, der sie 1899 erstmals beschrieb.

Sie ist von grundlegender Bedeutung in der Nevanlinna-Theorie (Wertverteilungstheorie).

Sei   eine analytische Funktion und seien   ihre Nullstellen in der Kreisfläche   für ein  . Dann gilt

 

Falls   in   keine Nullstellen hat, erhält man den Mittelwertsatz von Gauß für die harmonische Funktion  .

Beispiel: Polynome

Bearbeiten

Nach dem Fundamentalsatz der Algebra lässt sich jedes Polynom über   zerlegen als

 .

Aus der Jensenschen Formel folgt dann mit  :

 

Beispiel:   lässt sich zerlegen als   mit  . Wegen   folgt daraus

 .

Literatur

Bearbeiten
  • J. Jensen: Sur un nouvel et important théorème de la théorie des fonctions. In: Acta Mathematica. (Springer Netherlands) 22, 1899, S. 359–364. (französisch)
  • P. Borwein, T. Erdélyi: Jensen’s Formula. §4.2.E.10c In: Polynomials and Polynomial Inequalities. Springer-Verlag, New York 1995, ISBN 0-387-94509-1, S. 187.
  • S. G. Krantz: Jensen’s Formula. §9.1.2 In: Handbook of Complex Variables. Birkhäuser, Boston MA 1999, ISBN 3-7643-4011-8, S. 117–118.
Bearbeiten