dbo:abstract
|
- Rovnoběžnost je v geometrii vztah (relace) mezi dvěma přímkami, přímkou a rovinou anebo dvěma rovinami. Dvě přímky v dvourozměrné Eukleidově rovině nazveme rovnoběžné, pokud se neprotínají. Podobně dvě přímky ve vícerozměrném eukleidovském prostoru se nazývají rovnoběžné, pokud leží v nějaké dvourozměrné rovině a neprotínají se. Ekvivalentně, směrové vektory obou přímek jsou až na násobek stejné. Obecněji se v afinní geometrii definuje, že dva afinní podprostory jsou rovnoběžné, pokud jsou jejich vektorové prostory v inkluzi. (cs)
- Rovnoběžky jsou v matematice dvě přímky ležící v téže rovině, které se v Euklidovské geometrii nikde neprotínají. Rovnoběžky jsou takové dvě přímky, které mají stejný směr, ale neprotínají se v žádném bodě. I v případě prostorových přímek lze rovnoběžkami proložit rovinu. (cs)
- En geometria, el paral·lelisme és una relació que s'estableix entre rectes o plans. Dues rectes contingudes en un pla són paral·leles si bé són una i la mateixa recta o per contra no comparteixen cap punt. En el pla cartesià, dues rectes són paral·leles si tenen la mateixa pendent. De manera semblant, en l'espai, dos plans són paral·lels si bé són un i el mateix pla o bé no comparteixen cap punt. (ca)
- في الهندسة الرياضية، يعبر التوازي عن علاقة ثنائية بين كائنين هندسيين مثل خطين مستقيمين أو مستويين، وتشترط هذه العلاقة استحالة التقاء هذين الكائنين في جميع نقاط الفضاء. يرمز لعملية التوازي بين خطين a b بهذة الطريقة . (ar)
- Paralelo estas linio, kies ĉiuj punktoj estas egaldistancaj de alia linio. Tiaj linioj ege abundas en la ĉiutaga vivo: anguloj de konstruaĵoj, bordoj de libroj, mebloj, reloj ktp. Paralelebeno difiniĝas analoge: estas ebeno, kies ĉiuj punktoj estas egaldistancaj de alia ebeno. (eo)
- In der euklidischen Geometrie definiert man: Zwei Geraden sind parallel, wenn sie in einer Ebene liegen und einander nicht schneiden. Außerdem setzt man fest, dass jede Gerade zu sich selbst parallel sein soll. Zwei Geraden werden als echt parallel bezeichnet, wenn sie parallel, aber nicht identisch sind. Häufig wird von echt parallelen Geraden gesagt, dass sie einander „im Unendlichen“ schneiden. Diese Aussage bekommt einen präzisen Sinn, wenn der euklidische Raum zu einem projektiven Raum erweitert wird. Im dreidimensionalen euklidischen Raum gilt ferner:
* Zwei Geraden, die nicht in einer Ebene liegen, werden windschief genannt. (Auch sie haben keinen Schnittpunkt, sind aber nicht parallel.)
* Eine Gerade ist parallel zu einer Ebene, wenn sie ganz in dieser Ebene liegt oder diese nicht schneidet.
* Zwei Ebenen sind parallel, wenn sie zusammenfallen oder einander nicht schneiden. Man spricht von Parallelebenen. Analoge Sprechweisen gelten für euklidische und affine Geometrien in beliebiger Dimension und für die analytische Geometrie (die Geometrie in euklidischen Vektorräumen). Insbesondere sind zwei Geraden in einem Vektorraum parallel, wenn ihre Richtungsvektoren linear abhängig (oder proportional) sind. (de)
- Bi dimentsioko geometrian, bi zuzen paraleloak dira elkar ebakitzen ez badute. Hiru dimentsioko espazio euklidearrean, bi planok ez badute punturik partekatzen, paraleloak direla esaten da. Hiru dimentsioko espazioan elkartzen ez diren bi zuzenek, paralelo izatekotan, plano berean egon behar dute. (eu)
- En geometría el paralelismo es una relación que se establece entre cualquier variedad lineal de dimensión mayor o igual a 1 (rectas, planos, hiperplanos entre otros). En el plano cartesiano dos rectas son paralelas si tienen la misma pendiente o son perpendiculares a uno de los ejes, por ejemplo la función constante.En geometría afín, expresando una variedad lineal como V = p + E, con p punto y E espacio vectorial, se dice que A = a + F es paralela a B = b + G sii F está contenido en G o G está contenido en F, donde A y B son subvariedades lineales de la misma variedad lineal V y F y G son subespacios vectoriales del mismo espacio vectorial E. En el plano (afín) (V = ), esto se traduce de la siguiente manera: dos rectas son paralelas si contienen un mismo vector director. Obsérvese que, en un espacio afín tridimensional, una recta y un plano pueden ser paralelos, y también que la coincidencia de variedades lineales es un caso particular de paralelismo. Así, dos rectas, contenidas en un plano, son paralelas si, o bien son una y la misma recta (son rectas coincidentes) o, por el contrario, no comparten ningún punto. De manera análoga, en el espacio dos planos son paralelos si, o bien son uno y el mismo plano, o bien no comparten ninguna recta. (es)
- In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Parallel lines are the subject of Euclid's parallel postulate. Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry.In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism. (en)
- En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. (fr)
- Nella geometria euclidea due o più enti sono mutuamente paralleli se tutti i punti dell'uno hanno la stessa distanza minima dall'altro, o dal prolungamento di questo. Inoltre ogni ente geometrico si considera parallelo a sé stesso. La relazione così definita si dice parallelismo ed è una relazione di equivalenza. La relazione di parallelismo si nota generalmente con una doppia barra verticale o obliqua. Le espressioni e si leggono " è parallelo a ". (it)
- ( 다른 뜻에 대해서는 문서를 참고하십시오.) 유클리드 기하학에서 평행(平行)은 평면 또는 입체에서 두 개 이상의 직선·반직선·선분들이 아무리 늘여도 만나지 않는 상태를 뜻한다. 이때 이 만나지 않는 직선·반직선·선분들을 평행선이라고 한다. (ko)
- 初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、英: parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためには共面性それらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはアフィン幾何学の性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。 (ja)
- In de euclidische meetkunde heten twee lijnen, twee vlakken of een lijn en een vlak evenwijdig of parallel als zij overal even ver ('even wijd') van elkaar verwijderd zijn. Om aan te geven dat twee lijnen, een lijn en een vlak of twee vlakken evenwijdig zijn, wordt het teken gebruikt. Als de twee lijnen en evenwijdig zijn, wordt dat genoteerd als . Als een van de weinige West-Europese talen heeft het Nederlands voor evenwijdig een eigen woord, bedacht door Simon Stevin (1548-1620). Andere West-Europese talen hebben meestal een woord dat van het Oudgriekse παράλληλος, par-allè-los, parallel, komt, dat 'naast elkaar' betekent. (nl)
- Inom geometrin är två räta linjer parallella ifall vinkeln som bildas mellan dem är exakt 0 eller 180 grader. I Euklidisk geometri kommer två oändligt långa linjer i ett plan aldrig att skära varandra om och endast om de är parallella. (sv)
- Równoległość – relacja między obiektami takimi jak proste, płaszczyzny, odcinki, półproste. (pl)
- Em geometria, paralelismo é uma noção que indica se dois objetos (retas ou planos) estão na mesma direção. (pt)
- Паралле́льные прямы́е (от др.-греч. παράλληλος буквально «идущий рядом; идущий вдоль другого») в планиметрии — непересекающиеся прямые. В стереометрии две прямые называются параллельными, если лежат в одной плоскости и не пересекаются. (ru)
- В геометрії, паралельними прямими є прямі на площині, які ніколи не зустрічаються; тобто це дві прямі на площині, які не перетинаються або торкаються одна одної в жодній точці. Розширюючи це поняття, пряма і площина, або дві площини, у тривимірному Евклідовому просторі, що не мають спільних точок також називаються паралельними. Однак, в тривимірному просторі дві прямі, які не перетинаються , щоб їх вважали паралельними, повинні лежати в одній площині; в іншому випадку їх називають мимобіжними прямими. Паралельними є площини, які ніколи не зустрічаються у тривимірному просторі. Паралельні прямі є предметом із аксіоми паралельності Евкліда. Паралелізм є основною властивістю афінної геометрії і Евклідової геометрії, і є особливим поняттям саме цього типу геометрії.В деяких інших геометріях, наприклад в гіперболічній геометрії, прямі, що мають аналогічні властивості, також називають паралельними. (uk)
- 平行是一个几何学术语。在平面几何中,永远不会相交的多条直线,或者多个平面彼此互相平行。在欧几里得几何中,由平行公设,一个平面上的直线外指定一个点,就能指定出一条与它平行的直线。在非欧几何中,根据空间曲率的不同,在一条直线外指定一个点可以作多条或零条与它平行的直线。 在三维空间或一般的欧几里得空间中,直线或平面的平行关系视乎其方向向量或法向量,但與二維平面一樣,在一条直线外面指定一个点也只能表示一条与它平行的直线,并且在一个平面外指定一个点也只能指定一個与它平行的平面。然而,在一个平面外指定一个点可以指定和它平行的直线是无数条(这些直线都在与它平行的唯一一个平面上)。 (zh)
|
rdfs:comment
|
- Rovnoběžnost je v geometrii vztah (relace) mezi dvěma přímkami, přímkou a rovinou anebo dvěma rovinami. Dvě přímky v dvourozměrné Eukleidově rovině nazveme rovnoběžné, pokud se neprotínají. Podobně dvě přímky ve vícerozměrném eukleidovském prostoru se nazývají rovnoběžné, pokud leží v nějaké dvourozměrné rovině a neprotínají se. Ekvivalentně, směrové vektory obou přímek jsou až na násobek stejné. Obecněji se v afinní geometrii definuje, že dva afinní podprostory jsou rovnoběžné, pokud jsou jejich vektorové prostory v inkluzi. (cs)
- Rovnoběžky jsou v matematice dvě přímky ležící v téže rovině, které se v Euklidovské geometrii nikde neprotínají. Rovnoběžky jsou takové dvě přímky, které mají stejný směr, ale neprotínají se v žádném bodě. I v případě prostorových přímek lze rovnoběžkami proložit rovinu. (cs)
- En geometria, el paral·lelisme és una relació que s'estableix entre rectes o plans. Dues rectes contingudes en un pla són paral·leles si bé són una i la mateixa recta o per contra no comparteixen cap punt. En el pla cartesià, dues rectes són paral·leles si tenen la mateixa pendent. De manera semblant, en l'espai, dos plans són paral·lels si bé són un i el mateix pla o bé no comparteixen cap punt. (ca)
- في الهندسة الرياضية، يعبر التوازي عن علاقة ثنائية بين كائنين هندسيين مثل خطين مستقيمين أو مستويين، وتشترط هذه العلاقة استحالة التقاء هذين الكائنين في جميع نقاط الفضاء. يرمز لعملية التوازي بين خطين a b بهذة الطريقة . (ar)
- Paralelo estas linio, kies ĉiuj punktoj estas egaldistancaj de alia linio. Tiaj linioj ege abundas en la ĉiutaga vivo: anguloj de konstruaĵoj, bordoj de libroj, mebloj, reloj ktp. Paralelebeno difiniĝas analoge: estas ebeno, kies ĉiuj punktoj estas egaldistancaj de alia ebeno. (eo)
- Bi dimentsioko geometrian, bi zuzen paraleloak dira elkar ebakitzen ez badute. Hiru dimentsioko espazio euklidearrean, bi planok ez badute punturik partekatzen, paraleloak direla esaten da. Hiru dimentsioko espazioan elkartzen ez diren bi zuzenek, paralelo izatekotan, plano berean egon behar dute. (eu)
- En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. (fr)
- Nella geometria euclidea due o più enti sono mutuamente paralleli se tutti i punti dell'uno hanno la stessa distanza minima dall'altro, o dal prolungamento di questo. Inoltre ogni ente geometrico si considera parallelo a sé stesso. La relazione così definita si dice parallelismo ed è una relazione di equivalenza. La relazione di parallelismo si nota generalmente con una doppia barra verticale o obliqua. Le espressioni e si leggono " è parallelo a ". (it)
- ( 다른 뜻에 대해서는 문서를 참고하십시오.) 유클리드 기하학에서 평행(平行)은 평면 또는 입체에서 두 개 이상의 직선·반직선·선분들이 아무리 늘여도 만나지 않는 상태를 뜻한다. 이때 이 만나지 않는 직선·반직선·선분들을 평행선이라고 한다. (ko)
- 初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、英: parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためには共面性それらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはアフィン幾何学の性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。 (ja)
- In de euclidische meetkunde heten twee lijnen, twee vlakken of een lijn en een vlak evenwijdig of parallel als zij overal even ver ('even wijd') van elkaar verwijderd zijn. Om aan te geven dat twee lijnen, een lijn en een vlak of twee vlakken evenwijdig zijn, wordt het teken gebruikt. Als de twee lijnen en evenwijdig zijn, wordt dat genoteerd als . Als een van de weinige West-Europese talen heeft het Nederlands voor evenwijdig een eigen woord, bedacht door Simon Stevin (1548-1620). Andere West-Europese talen hebben meestal een woord dat van het Oudgriekse παράλληλος, par-allè-los, parallel, komt, dat 'naast elkaar' betekent. (nl)
- Inom geometrin är två räta linjer parallella ifall vinkeln som bildas mellan dem är exakt 0 eller 180 grader. I Euklidisk geometri kommer två oändligt långa linjer i ett plan aldrig att skära varandra om och endast om de är parallella. (sv)
- Równoległość – relacja między obiektami takimi jak proste, płaszczyzny, odcinki, półproste. (pl)
- Em geometria, paralelismo é uma noção que indica se dois objetos (retas ou planos) estão na mesma direção. (pt)
- Паралле́льные прямы́е (от др.-греч. παράλληλος буквально «идущий рядом; идущий вдоль другого») в планиметрии — непересекающиеся прямые. В стереометрии две прямые называются параллельными, если лежат в одной плоскости и не пересекаются. (ru)
- 平行是一个几何学术语。在平面几何中,永远不会相交的多条直线,或者多个平面彼此互相平行。在欧几里得几何中,由平行公设,一个平面上的直线外指定一个点,就能指定出一条与它平行的直线。在非欧几何中,根据空间曲率的不同,在一条直线外指定一个点可以作多条或零条与它平行的直线。 在三维空间或一般的欧几里得空间中,直线或平面的平行关系视乎其方向向量或法向量,但與二維平面一樣,在一条直线外面指定一个点也只能表示一条与它平行的直线,并且在一个平面外指定一个点也只能指定一個与它平行的平面。然而,在一个平面外指定一个点可以指定和它平行的直线是无数条(这些直线都在与它平行的唯一一个平面上)。 (zh)
- In der euklidischen Geometrie definiert man: Zwei Geraden sind parallel, wenn sie in einer Ebene liegen und einander nicht schneiden. Außerdem setzt man fest, dass jede Gerade zu sich selbst parallel sein soll. Zwei Geraden werden als echt parallel bezeichnet, wenn sie parallel, aber nicht identisch sind. Häufig wird von echt parallelen Geraden gesagt, dass sie einander „im Unendlichen“ schneiden. Diese Aussage bekommt einen präzisen Sinn, wenn der euklidische Raum zu einem projektiven Raum erweitert wird. Im dreidimensionalen euklidischen Raum gilt ferner: (de)
- En geometría el paralelismo es una relación que se establece entre cualquier variedad lineal de dimensión mayor o igual a 1 (rectas, planos, hiperplanos entre otros). En el plano cartesiano dos rectas son paralelas si tienen la misma pendiente o son perpendiculares a uno de los ejes, por ejemplo la función constante.En geometría afín, expresando una variedad lineal como V = p + E, con p punto y E espacio vectorial, se dice que A = a + F es paralela a B = b + G sii F está contenido en G o G está contenido en F, donde A y B son subvariedades lineales de la misma variedad lineal V y F y G son subespacios vectoriales del mismo espacio vectorial E. En el plano (afín) (V = ), esto se traduce de la siguiente manera: dos rectas son paralelas si contienen un mismo vector director. (es)
- In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. (en)
- В геометрії, паралельними прямими є прямі на площині, які ніколи не зустрічаються; тобто це дві прямі на площині, які не перетинаються або торкаються одна одної в жодній точці. Розширюючи це поняття, пряма і площина, або дві площини, у тривимірному Евклідовому просторі, що не мають спільних точок також називаються паралельними. Однак, в тривимірному просторі дві прямі, які не перетинаються , щоб їх вважали паралельними, повинні лежати в одній площині; в іншому випадку їх називають мимобіжними прямими. Паралельними є площини, які ніколи не зустрічаються у тривимірному просторі. (uk)
|