iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://dbpedia.org/resource/Linnett_double-quartet_theory
About: Linnett double-quartet theory
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Linnett double-quartet theory (LDQ) is a method of describing the bonding in molecules which involves separating the electrons depending on their spin, placing them into separate 'spin tetrahedra' to minimise the Pauli repulsions between electrons of the same spin. Introduced by J. W. Linnett in his 1961 monograph and 1964 book, this method expands on the electron dot structures pioneered by G. N. Lewis. While the theory retains the requirement for fulfilling the octet rule, it dispenses with the need to force electrons into coincident pairs. Instead, the theory stipulates that the four electrons of a given spin should maximise the distances between each other, resulting in a net tetrahedral electronic arrangement that is the fundamental molecular building block of the theory.

Property Value
dbo:abstract
  • Linnett double-quartet theory (LDQ) is a method of describing the bonding in molecules which involves separating the electrons depending on their spin, placing them into separate 'spin tetrahedra' to minimise the Pauli repulsions between electrons of the same spin. Introduced by J. W. Linnett in his 1961 monograph and 1964 book, this method expands on the electron dot structures pioneered by G. N. Lewis. While the theory retains the requirement for fulfilling the octet rule, it dispenses with the need to force electrons into coincident pairs. Instead, the theory stipulates that the four electrons of a given spin should maximise the distances between each other, resulting in a net tetrahedral electronic arrangement that is the fundamental molecular building block of the theory. By taking cognisance of both the charge and the spin of the electrons, the theory can describe bonding situations beyond those invoking electron pairs, for example two-centre one-electron bonds. This approach thus facilitates the generation of molecular structures which accurately reflect the physical properties of the corresponding molecules, for example molecular oxygen, benzene, nitric oxide or diborane. Additionally, the method has enjoyed some success for generating the molecular structures of excited states, radicals, and reaction intermediates. The theory has also facilitated a more complete understanding of chemical reactivity, hypervalent bonding and three-centre bonding. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 69290671 (xsd:integer)
dbo:wikiPageLength
  • 71370 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116697484 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdfs:comment
  • Linnett double-quartet theory (LDQ) is a method of describing the bonding in molecules which involves separating the electrons depending on their spin, placing them into separate 'spin tetrahedra' to minimise the Pauli repulsions between electrons of the same spin. Introduced by J. W. Linnett in his 1961 monograph and 1964 book, this method expands on the electron dot structures pioneered by G. N. Lewis. While the theory retains the requirement for fulfilling the octet rule, it dispenses with the need to force electrons into coincident pairs. Instead, the theory stipulates that the four electrons of a given spin should maximise the distances between each other, resulting in a net tetrahedral electronic arrangement that is the fundamental molecular building block of the theory. (en)
rdfs:label
  • Linnett double-quartet theory (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License