iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://bn.wikipedia.org/wiki/Electron
ইলেকট্রন - উইকিপিডিয়া বিষয়বস্তুতে চলুন

ইলেকট্রন

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
(Electron থেকে পুনর্নির্দেশিত)
ইলেকট্রন
পরমাণুর প্রথম, দ্বিতীয় ও তৃতীয় কক্ষে এস, পি ও ডি অরবাইটালের ইলেক্ট্রন-ঘনত্ব বিন্যাসের তাত্ত্বিক পরিমাপ রং দিয়ে দেখানো হয়েছেঃ কালো মানে ঘনত্ব শূন্য, সাদা মানে সর্বোচ্চ ঘনত্ব, লালের মধ্যে কালচে বা সাদাটে ভাবের তারতম্যে বিভিন্ন মাঝারি ঘনত্ব দেখানো হয়েছে
গঠনমৌলিক কণিকা
পরিসংখ্যানফার্মিয়ন
প্রজন্মপ্রথম
মিথষ্ক্রিয়াঅভিকর্ষ, তাড়িতচৌম্বক মিথস্ক্রিয়া, দুর্বল মিথস্ক্রিয়া
প্রতীকe-, β-
প্রতিকণাপজিট্রন
তত্ত্বজর্জ স্টোনি (১৮৭৪)
আবিষ্কারজে. জে. থমসন (১৮৯৭)
ভর৯.১০৯  ৩৮২৬ (১৬) × ১০–৩১ কেজিআপেক্ষিক ভর 0(এই জন্যই পারমাণবিক ভরের ক্ষেত্রে ইলেকট্রনের ভর ধরা হয় না)[]

৫.৪৮৫ ৭৯৯ ০৯৪৫(২৪) × ১০–৪ এএমইউ
১৮২২.৮৮৮ ৪৮৪৯(৮) এএমইউ

০.৫১০ ৯৯৮ ৯১৮(৪৪) MeV/c
ইলেকট্রিক চার্জ–১.৬০২ ১৭৬ ৫৩(১৪) × 10-১৯ Cএর আপেক্ষিক আধান -1[]
স্পিন½

ইলেকট্রন একটি অধঃ-পরমাণু (subatomic) মৌলিক কণা (elementary particle) যা একটি ঋণাত্মক তড়িৎ আধান বহন করে। ইলেকট্রন একটি স্পিন -১/২ অর্থাৎ ফার্মিয়ন এবং লেপ্টন শ্রেনীভুক্ত। এটি প্রধানত তড়িৎ-চুম্বকীয় মিথষ্ক্রিয়ায় অংশগ্রহণ করে। পারমাণবিক কেন্দ্রের (নিউক্লিয়াসের) সঙ্গে একত্র হয়ে ইলেকট্রন পরমাণু তৈরি করে এবং এর রাসায়নিক বন্ধনে অংশগ্রহণ করে। মূলত ইলেকট্রন চলাচলের দরুন কঠিন পরিবাহীতে বিদ্যুতের প্রবাহ ঘটে। ইলেকট্রনের স্পিন ও ইলেকট্রন প্রবাহের বর্তুলতা (চক্রাকার প্রবাহ) বা ত্বরণের জন্য চৌম্বকত্ব তৈরি হয়।

আবিষ্কারের ইতিহাস

[সম্পাদনা]

প্রাথমিক পর্যায়

[সম্পাদনা]

বিজ্ঞানী জি. জনস্টোন স্টোনি সর্বপ্রথম তড়িৎ রসায়নে ইলেকট্রনকে আধানের একটি একক হিসেবে আখ্যায়িত করেন এবং তিনিই ১৮৯১ সালে ইলেকট্রন নামকরণ করেন। ১৮৯০-এর দশকে বেশ কয়েকজন বিজ্ঞানী বলেন যে তড়িৎ বিচ্ছিন্ন একেকের দ্বারা গঠিত হতে পারে এবং এভাবেই এ বিষয়ে সবচেয়ে ভাল ধারণা করা সম্ভব। এই এককগুলোর অনেক নামই প্রস্তাব করা হয়েছিল। কিন্তু তখনও পর্যন্ত বাস্তব ভিত্তিতে এর প্রমাণ দেয়া সম্ভব হয়নি।

থমসনের পরীক্ষা

[সম্পাদনা]

ইলেকট্রন যে একটি উপআণবিক কণিকা তা সর্বপ্রথম বিজ্ঞানী জে. জে. থমসন ১৮৯৭ সালে আবিষ্কার করেন। কেমব্রিজ বিশ্ববিদ্যালয়ের ক্যাভেন্ডিশ গবেষণাগারে ক্যাথোড রশ্মি নল নিয়ে গবেষণা করার সময় তিনি এই আবিষ্কার করেন। ক্যাথোড রশ্মি নল হল একটি সম্পূর্ণ বদ্ধ কাচের সিলিন্ডার যার মধ্যে দুইটি তড়িৎ ধারক (electrode) শুন্য স্থান দ্বারা পৃথ করা থাকে। যখন দুইটি তড়িৎ ধারকের মধ্যে বিভব পার্থক্য প্রয়োগ করা হয় তখন ক্যাথোড রশ্মি উৎপন্ন হয় এবং এর ফলে নলের মধ্যে আভার সৃষ্টি হয়। উপর্যুপরী পরীক্ষার মাধ্যমে থমসন প্রমাণ করেন যে চৌম্বকত্বের সাহায্যে রশ্মি থেকে ঋণাত্মক আধান পৃথক করা যায় না; তবে তড়িৎ ক্ষেত্র দ্বারা রশ্মিগুলোকে বিক্ষিপ্ত করা যায়। মূলত ইলেকট্রনের আবিষ্কার এবং এর অংশসমূহ সম্বন্ধে ধারণা লাভ করতে গিয়ে থমসনকে তিন তিনটি পরীক্ষা সম্পাদন করতে হয়েছিলো:

প্রথমত:
এই পরীক্ষার সাথে ১৮৯৫ সালে জ্যাঁ পেরিন কৃত পরীক্ষার বেশ মিল ছিল। থমসন এক জোড়া ধাতুর সিলিন্ডার দ্বারা একটি ক্যাথোড রশ্মি নল তৈরি করেন যার মধ্যে একটি সংকীর্ণ ফাঁক ছিল। এই সিলিন্ডারদ্বয় আবার একটি ইলেকট্রোমিটারের সাথে সংযুক্ত ছিল যাতে তড়িৎ আধান সংরক্ষণ এবং পরিমাপ করা যায়। পেরিন দেখেছিলেন ক্যাথোড রশ্মি একটি তড়িৎ আধান জমা করে। টমসন দেখতে চেয়েছিলেন একটি চুম্বকের মাধ্যমে রশ্মিগুলো বাঁকিয়ে রশ্মি থেকে আধান পৃথক করা যায় কি-না। তিনি দেখতে পান রশ্মিগুলো যখন সিলিন্ডারের সরু ফাঁকে প্রবেশ করে তখন ইলেকট্রোমিটারে ঋণাত্মক আধানের আধিক্য দেখা যায়। রশ্মিগুলো বাঁকিয়ে দিলে মিটারে ঋণাত্মক আধানের পরিমাণ এতো হয়না, কারণ রশ্মি তখন ফাঁকে প্রবেশেরই সুযোগ পায় না। এ থেকে স্পষ্টতই ধারণা করে নেয়া যায় যে ক্যাথোড রশ্মি এবং ঋণাত্মক আধান যেভাবেই হোক একসাথে থাকে, এদের পৃথক করা যায় না।

দ্বিতীয়ত:
পদার্থবিজ্ঞানীরা তড়িৎ ক্ষেত্রের সাহায্যে ক্যাথোড রশ্মি বাঁকানোর চেষ্টা করে ব্যর্থ হন। এবার থমসন একটি নতুন পরীক্ষণের কথা চিন্তা করেন। একটি আয়নিত কণা তড়িৎ ক্ষেত্র দ্বারা প্রভাবিত হলে অবশ্যই বেঁকে যাবে, কিন্তু যদি একে যদি একটি পরিবাহী দ্বারা ঘিরে দেয়া হয় তবে আর বাঁকবে না। তিনি সন্দেহ করেন যে নলের মধ্যে বিরাজমান গ্যাস বিশেষ পরিস্থিতিতে ক্যাথোড রশ্মির কারণেই তড়িৎ পরিবাহীতে পরিণত হয়েছে। এই ধারণা প্রমাণ করার জন্য অনেক কষ্টে তিনি একটি নলকে প্রায় বিশুদ্ধ শূণ্যস্থান করতে সমর্থ হন। এবার পরীক্ষা চালিয়ে দেখা যায় ক্যাথোড রশ্মি তড়িঃ ক্ষেত্র দ্বারা বেঁকে যাচ্ছে। এই দুইটি পরীক্ষণ থেকে টমসন সিদ্ধান্তে পৌঁছান,

তৃতীয়ত:
থমসনের তৃতীয় পরীক্ষার বিষয়বস্তু ছিল কণিকাসমূহের মৌলিক বৈশিষ্ট্যসমূহ অনুসন্ধান করা। তিনি যদিও এ ধরনের কোনো কণিকার সরাসরি ভর বা আধান বের করতে পারেন নি, তবে চুম্বকত্বের দ্বারা এই রশ্মিগুলো কতটা বাঁকে এবং এদের মধ্যে কি পরিমাণ শক্তি রয়েছে তা পরিমাপ করতে পেরেছিলেন। এই উপাত্তগুলোর মাধ্যমে তিনি একটি কণিকার ভর এবং এর তড়িৎ আধানের মধ্যে একটি অণুপাত বের করেন। নিশ্চয়তার জন্য তিনি অনেক ধরনের নল এবং গ্যাস নিয়ে পরীক্ষণ সম্পাদন করার মাধ্যমে উপাত্তগুলো সংগ্রহ করেন। এই অণুপাত থেকে বেশ আশ্চর্যজনক ফল পাওয়া যায়; এর মান একটি আয়নিত হাইড্রোজেনের তুলনায় এক হাজার গুণেরও বেশি ছোট হয়।

পরবর্তী যুগ

[সম্পাদনা]

অণুপাতের পরিমাণটি এতো ছোট হওয়ার বিষয়টি পরীক্ষণের পর এমিল ওয়াইখার্ট (Emil Wiechert) উত্থাপন করেন। এ হিসেবে, হয় ক্যাথোড রশ্মির আধানের পরিমাণ বিপুল (আয়নিক পরমাণূর তুলনায়) অথবা তারা তাদের আধানের তুলনায় আশ্চর্যজনকভাবেই হালকা। এই দুটি সম্ভাবনার মধ্যে বেছে নেয়ার বিষয়টি ফিলিপ লিনার্ড নির্দিষ্ট করেন। ক্যাথোড রশ্মি কীভাবে গ্যাসের বাঁধা অতিক্রম করে তা নিয়ে পরীক্ষা করে তিনি দেখান যে, ক্যাথোড রশ্মি যদি কণিকা হয় তবে তার ভর অতি ক্ষুদ্র হতে হবে, যেকোন পরমাণুর চেয়েও অনেক ক্ষুদ্র। অবশ্য এর সুনির্দিষ্ট প্রমাণ তখনও দেয়া সম্ভব হয়নি। পরবর্তীকালে গবেষণায় নির্দিষ্ট মান বেরিয়ে এসেছে। যেমন ১৯০৯ সালে রবার্ট মিলিকান তার তৈল-বিন্দু পরীক্ষার সাহায্যে ইলেকট্রনের আধান নির্ণয় করেন। টমসন দৃঢ়ভাবে ঘোষণা করেছিলেন যে,

পর্যায়বৃত্ত ধর্ম অনুসারে মৌলসমূহের রাসায়নিক ধর্ম পর্যায়বৃত্তভাবে ব্যাপকহারে পরিবর্তীত হয়্ এবং এটিই বর্তমান পর্যায় সারণীর ভিত্তি রচনা করেছে। এই তত্ত্বটিকে আদিতে পারমাণবিক ভর দ্বারা ব্যাখ্যা করা হতো, কিন্তু পারমাণবিক ভরের ক্রম ঠিক না থাকায় এ নিয়ে সমস্যার সৃষ্টি হয়। ১৯১৩ সালে বিজ্ঞানী অঁরি মোসলে পারমাণবিক সংখ্যার ধারণা প্রবর্তন করেন এবং প্রতিটি পরমাণুর মধ্যস্থিত প্রোটন সংখ্যা দ্বারা পর্যায়বৃত্ত ধর্ম ব্যাখ্যা করেন। একই বছর নিল্‌স বোর দেখান যে ইলেকট্রনই প্রকৃতপক্ষে পর্যায় সারণীর মূল ভিত্তি। ১৯১৬ সালে গালবার্ট নিউটন লুইস ইলেকট্রনীয় মিখস্ক্রীয়ার মাধ্যমে রাসায়নিক বন্ধন ব্যাখ্য করেন।

শ্রেণিবিভাগ

[সম্পাদনা]

ইলেকট্রন লেপ্টন নামক অধঃপারমাণবিক কণার শ্রেণীতে অবস্থিত। এদেরকে মৌল কণিকা হিসেবে ধরা হয়, অর্থাৎ এদেরকে আরও ক্ষুদ্রতর অংশে ভাগ করা সম্ভব নয়। অন্যান্য কণার মত ইলেকট্রনও তরঙ্গ হিসেবে আচরণ করতে পারে। এই আচরণটিকে তরঙ্গ-কণা দ্বৈত আচরণ হিসেবে আখ্যায়িত করা হয়। পদার্থবিজ্ঞানে এর অপর নাম কমপ্লিমেন্টারিটি, এই নামটি বিজ্ঞানী নিল্‌স বোর কর্তৃক প্রদত্ত। দ্বি-চির পরীক্ষা দ্বারা এটি প্রমাণ করা যায়।

ইলেকট্রনের প্রতিকণিকার নাম পজিট্রন। বোঝাই যাচ্ছে যে পজিট্রনের ভর হুবহু ইলেকট্রনের সমান কিন্তু আধান ধনাত্মক হওয়ার পরিবর্তে ঋণাত্মক, যদিও আধানের মান সমান। পজিট্রনের আবিষ্কারক কার্ল ডেভিড এন্ডারসন আদর্শ ইলেকট্রনকে নেগেট্রন নামে ডাকার প্রস্তাব করেছিলেন। তিনি বলেছিলেন, ইলেকট্রন নামটি একটি সাধারণ শব্দ হিসেবে ধনাত্মক এবং ঋণাত্মক উভয় আধান বোঝাতে ব্যবহার করা উচিত। তবে এই প্রস্তাব গ্রহণ করা হয় নি।

বৈশিষ্ট্য ও আচরণ

[সম্পাদনা]

প্রতিটি ইলেকট্রন একটি ঋণাত্মক তড়িৎ আধান বহন করে। এটি তড়িৎ-চুম্বকীয় মিথষ্ক্রিয়ায় অংশগ্রহণ করে। পারমাণবিক কেন্দ্রীনের (নিউক্লিয়াসের) সঙ্গে একত্র হয়ে ইলেকট্রন পরমাণু তৈরি করে এবং এর রাসায়নিক বন্ধনে অংশগ্রহণ করে। মূলত ইলেকট্রন চলাচলের ফলেই কঠিন পরিবাহীতে বিদ্যুতের প্রবাহ ঘটে। ইলেকট্রনের স্পিন ও ইলেকট্রন প্রবাহের বর্তুলতা (চক্রাকার প্রবাহ) বা ত্বরণের জন্য চৌম্বকত্ব তৈরি হয়।

ইলেকট্রনের ব্যবহার

[সম্পাদনা]

বিদ্যুৎ এর প্রবাহ মুলত ইলেকট্রনের চঞ্চল ফলেই হয়ে থাকে।আয়ন হলো নিট বৈদ্যুতিক আধানযুক্ত কণিকা, পরমাণু বা অনু।

দৈনন্দিন ঘটনায় গুরুত্ব

[সম্পাদনা]

যদিও পদার্থবিদ্যায় তড়িৎ আধানের মধ্যে আকর্ষণ-বিকর্ষণ (স্থির তড়িৎ), বিদ্যুৎ ও চৌম্বক ক্রিয়া কেবল এই দুই-তিন রকম ক্ষেত্রে ইলেক্ট্রনের ভূমিকার কথাই বেশি বলা হয়, ভরজনিত জাড্যতা ছাড়া আমাদের চারিপাশের দৃশ্য বিশ্বের পদার্থের অন্যান্য অধিকাংশ ভৌত ধর্ম (ও অবশ্যই সমস্ত রাসায়নিক ধর্ম) পদার্থটির মধ্যের ইলেকট্রনগুলির বন্ধন ও বিন্যাসের উপর নির্ভর করে -- যেমন হীরার কাঠিন্য সমযোজী বন্ধন সমূহের বিস্তারিত জালের জন্য; বিভিন্ন রঙ্গক পদার্থের রঙ তাদের উচ্চতম শক্তির আলগা ইলেকট্রনগুলি কোন কম্পাঙ্কের ফোটন শোষণ করে তার উপর; গঁদের আঠারো আঠালোভাব তার ভ্যান ডার ওয়ালস বন্ধন ক্ষমতার জন্য; বুলেটপ্রুফ জামার দুর্ভেদ্যতা ও বোরোজেন (বোরন নাইট্রাইড) এর কাঠিন্য আসে ছড়িয়া থাকা (ডিলোকালাইজড) বা ইলেক্ট্রন-ডেফিসিয়েন্ট বন্ধনের জন্য; শ্লেষ্মার পিচ্ছিল ভাবতরুণাস্থি ইত্যাদি হাইড্রোজেল-এর চাপ সহ্য করার ক্ষমতা এদের মধ্যে স্বল্প-ব্যবধানে অবস্থিত অনেক ঋণাত্মক আধানের বিকর্ষণের জন্য; ধাতুর স্প্রিং-এর দৃঢ়তাইলাস্টিসিটি, ধাতুকে পিটিয়ে কতটা পাতলা পাত বানানো যায় (ম্যালিয়েবিলিটি), তার টেনে কতটা লম্বা করা যায় (ডাক্টিলিটি), নমনীয়তা ইত্যাদি ধাতব ইলেকট্রনীয় বন্ধনের কিছু ধর্মের জন্য; এবং বিভিন্ন জৈব পদার্থের জল বা তেলে দ্রাব্যতা তাদের মধ্যেকার বন্ধন-গুলি পোলার না নন-পোলার তার উপর নির্ভর করে; বিভিন্ন তেলের গলনাঙ্কস্ফুটনাঙ্ক তাদের ফ্যাটি এসিড কার্বন শৃঙ্খলের মধ্যে দ্বিবন্ধনের সংখ্যার উপর নির্ভর করে।

আরও দেখুন

[সম্পাদনা]

তথ্যসূত্র

[সম্পাদনা]
  1. All masses are CODATA values accessed via the NIST’s electron mass page. The fractional version’s denominator is the inverse of the decimal value (along with its relative standard uncertainty of 4.4 × 10–10)
  2. The electron’s charge is the negative of elementary charge (which is a positive value for the proton). CODATA value accessed via the NIST’s elementary charge page