TY - CONF
AU - Puri, Anuj
AU - Borkar, Vivek
AU - Varaiya, Pravin
ED - Alur, Rajeev
ED - Henzinger, Thomas A.
ED - Sontag, Eduardo D.
PY - 1996
DA - 1996//
TI - ε-Approximation of differential inclusions
BT - Hybrid Systems III
SP - 362
EP - 376
PB - Springer Berlin Heidelberg
CY - Berlin, Heidelberg
AB - For a Lipschitz differential inclusion x ∈ f(x), we give a method to compute an arbitrarily close approimation of Reachf(X0, t) — the set of states reached after time t starting from an initial set X0. For a differential inclusion x ∈ f(x), and any ε>0, we define a finite sample graph A∈. Every trajectory φ of the differential inclusion x ∈f(x) is also a “trajectory” in A∈. And every “trajectory” η of A∈ has the property that dist(ή(t), f(η(t))) ≤ ε. Using this, we can compute the εinvariant sets of the differential inclusion — the sets that remain invariant under ε-perturbations in f.
SN - 978-3-540-68334-6
ID - 10.1007/BFb0020960
ER -