iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



L2luZmluaXRvLz9hY3Rpb249ZWRpdCZ4PWh0dHAlM0ElMkYlMkZlbi53aWtpcGVkaWEub3JnJTJGdyUyRmluZGV4LnBocCUzRnRpdGxlJTNEU2ltcGxleF9hbGdvcml0aG0=. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

1. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

2. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

3. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

4. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

5. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

6. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

7. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

8. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

9. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

10. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

11. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

12. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

13. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

14. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

15. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

16. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

17. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

18. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

19. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

20. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

21. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

22. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

23. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

24. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

25. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

26. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

27. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

28. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

29. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

30. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

31. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

32. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

33. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

34. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

35. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

36. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

37. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

38. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

39. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

40. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

41. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

42. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

43. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

44. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

45. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

46. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

47. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

48. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

49. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

50. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

51. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

52. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

53. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

54. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

55. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

56. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

57. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

58. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

59. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

60. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

61. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

62. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

63. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

64. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

65. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

66. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

67. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

68. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

69. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

70. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

71. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

72. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

73. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

74. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

75. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

76. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

77. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

78. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

79. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

80. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

81. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

82. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

83. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

84. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

85. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

86. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

87. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

88. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

89. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

90. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

91. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

92. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

93. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

94. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

95. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

96. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

97. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

98. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

99. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

100. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

101. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

102. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

103. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

104. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

105. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

106. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

107. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

108. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

109. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

110. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

111. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

112. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

113. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

114. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

115. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

116. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

117. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

118. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

119. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

120. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

121. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

122. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

123. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

124. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

125. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

126. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

127. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

128. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

129. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

130. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

131. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

132. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

133. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

134. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

135. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

136. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

137. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

138. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

139. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

140. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

141. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

142. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

143. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

144. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

145. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

146. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

147. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

148. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

149. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

150. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

151. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

152. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

153. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

154. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

155. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

156. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

157. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

158. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

159. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

160. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

161. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

162. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

163. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

164. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

165. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

166. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

167. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

168. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

169. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

170. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

171. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

172. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

173. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

174. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

175. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

176. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

177. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

178. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

179. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

180. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

181. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

182. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

183. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

184. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

185. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

186. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

187. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

188. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

189. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

190. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

191. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

192. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

193. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

194. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

195. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

196. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

197. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

198. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

199. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

200. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

201. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

202. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

203. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

204. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

205. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

206. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

207. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

208. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

209. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

210. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

211. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

212. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

213. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

214. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

215. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

216. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

217. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

218. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

219. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

220. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

221. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

222. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

223. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

224. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

225. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

226. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

227. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

228. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

229. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

230. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

231. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

232. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

233. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

234. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

235. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

236. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

237. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

238. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

239. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

240. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

241. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

242. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

243. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

244. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

245. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

246. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

247. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

248. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

249. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

250. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

251. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

252. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

253. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

254. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

255. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

256. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

257. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

258. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

259. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

260. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

261. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

262. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

263. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

264. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

265. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

266. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

267. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

268. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

269. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

270. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

271. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

272. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

273. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

274. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

275. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

276. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

277. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

278. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

279. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

280. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

281. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

282. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

283. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

284. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

285. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

286. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

287. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

288. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

289. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

290. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

291. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

292. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

293. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

294. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

295. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

296. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

297. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

298. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

299. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

300. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

301. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

302. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

303. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

304. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

305. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

306. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

307. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

308. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

309. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

310. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

311. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

312. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

313. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

314. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

315. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

316. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

317. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

318. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

319. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

320. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

321. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

322. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

323. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

324. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

325. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

326. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

327. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

328. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

329. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

330. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

331. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

332. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

333. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

334. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

335. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

336. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

337. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

338. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

339. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

340. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

341. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

342. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

343. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

344. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

345. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

346. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

347. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

348. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

349. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

350. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

351. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

352. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

353. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

354. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

355. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

356. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

357. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

358. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

359. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

360. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

361. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

362. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

363. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

364. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

365. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

366. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

367. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

368. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

369. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

370. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

371. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

372. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

373. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

374. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

375. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

376. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

377. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

378. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

379. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

380. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

381. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

382. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

383. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

384. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

385. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

386. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

387. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

388. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

389. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

390. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

391. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

392. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

393. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

394. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

395. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

396. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

397. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

398. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

399. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

400. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

401. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

402. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

403. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

404. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

405. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

406. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

407. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

408. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

409. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

410. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

411. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

412. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

413. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

414. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

415. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

416. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

417. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

418. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

419. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

420. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

421. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

422. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

423. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

424. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

425. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

426. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

427. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

428. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

429. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

430. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

431. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

432. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

433. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

434. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

435. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

436. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

437. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

438. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

439. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

440. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

441. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

442. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

443. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

444. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

445. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

446. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

447. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

448. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

449. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

450. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

451. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

452. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

453. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

454. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

455. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

456. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

457. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

458. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

459. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

460. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

461. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

462. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

463. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

464. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

465. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

466. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

467. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

468. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

469. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

470. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

471. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

472. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

473. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

474. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

475. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

476. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

477. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

478. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

479. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

480. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

481. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

482. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

483. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

484. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

485. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

486. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

487. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

488. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

489. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

490. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

491. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

492. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

493. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

494. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

495. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

496. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

497. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

498. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

499. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

500. /infinito/?action=edit&x=http%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DSimplex_algorithm

Link to original content: http://en.wikipedia.org/w/index.php?title=Simplex_algorithm
Simplex algorithm - Wikipedia Jump to content

Simplex algorithm

From Wikipedia, the free encyclopedia

In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming.[1]

The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin.[2] Simplices are not actually used in the method, but one interpretation of it is that it operates on simplicial cones, and these become proper simplices with an additional constraint.[3][4][5][6] The simplicial cones in question are the corners (i.e., the neighborhoods of the vertices) of a geometric object called a polytope. The shape of this polytope is defined by the constraints applied to the objective function.

History

[edit]

George Dantzig worked on planning methods for the US Army Air Force during World War II using a desk calculator. During 1946, his colleague challenged him to mechanize the planning process to distract him from taking another job. Dantzig formulated the problem as linear inequalities inspired by the work of Wassily Leontief, however, at that time he didn't include an objective as part of his formulation. Without an objective, a vast number of solutions can be feasible, and therefore to find the "best" feasible solution, military-specified "ground rules" must be used that describe how goals can be achieved as opposed to specifying a goal itself. Dantzig's core insight was to realize that most such ground rules can be translated into a linear objective function that needs to be maximized.[7] Development of the simplex method was evolutionary and happened over a period of about a year.[8]

After Dantzig included an objective function as part of his formulation during mid-1947, the problem was mathematically more tractable. Dantzig realized that one of the unsolved problems that he had mistaken as homework in his professor Jerzy Neyman's class (and actually later solved), was applicable to finding an algorithm for linear programs. This problem involved finding the existence of Lagrange multipliers for general linear programs over a continuum of variables, each bounded between zero and one, and satisfying linear constraints expressed in the form of Lebesgue integrals. Dantzig later published his "homework" as a thesis to earn his doctorate. The column geometry used in this thesis gave Dantzig insight that made him believe that the Simplex method would be very efficient.[9]

Overview

[edit]
A system of linear inequalities defines a polytope as a feasible region. The simplex algorithm begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the optimal solution.
Polyhedron of simplex algorithm in 3D

The simplex algorithm operates on linear programs in the canonical form

maximize
subject to and

with the coefficients of the objective function, is the matrix transpose, and are the variables of the problem, is a p×n matrix, and . There is a straightforward process to convert any linear program into one in standard form, so using this form of linear programs results in no loss of generality.

In geometric terms, the feasible region defined by all values of such that and is a (possibly unbounded) convex polytope. An extreme point or vertex of this polytope is known as basic feasible solution (BFS).

It can be shown that for a linear program in standard form, if the objective function has a maximum value on the feasible region, then it has this value on (at least) one of the extreme points.[10] This in itself reduces the problem to a finite computation since there is a finite number of extreme points, but the number of extreme points is unmanageably large for all but the smallest linear programs.[11]

It can also be shown that, if an extreme point is not a maximum point of the objective function, then there is an edge containing the point so that the value of the objective function is strictly increasing on the edge moving away from the point.[12] If the edge is finite, then the edge connects to another extreme point where the objective function has a greater value, otherwise the objective function is unbounded above on the edge and the linear program has no solution. The simplex algorithm applies this insight by walking along edges of the polytope to extreme points with greater and greater objective values. This continues until the maximum value is reached, or an unbounded edge is visited (concluding that the problem has no solution). The algorithm always terminates because the number of vertices in the polytope is finite; moreover since we jump between vertices always in the same direction (that of the objective function), we hope that the number of vertices visited will be small.[12]

The solution of a linear program is accomplished in two steps. In the first step, known as Phase I, a starting extreme point is found. Depending on the nature of the program this may be trivial, but in general it can be solved by applying the simplex algorithm to a modified version of the original program. The possible results of Phase I are either that a basic feasible solution is found or that the feasible region is empty. In the latter case the linear program is called infeasible. In the second step, Phase II, the simplex algorithm is applied using the basic feasible solution found in Phase I as a starting point. The possible results from Phase II are either an optimum basic feasible solution or an infinite edge on which the objective function is unbounded above.[13][14][15]

Standard form

[edit]

The transformation of a linear program to one in standard form may be accomplished as follows.[16] First, for each variable with a lower bound other than 0, a new variable is introduced representing the difference between the variable and bound. The original variable can then be eliminated by substitution. For example, given the constraint

a new variable, , is introduced with

The second equation may be used to eliminate from the linear program. In this way, all lower bound constraints may be changed to non-negativity restrictions.

Second, for each remaining inequality constraint, a new variable, called a slack variable, is introduced to change the constraint to an equality constraint. This variable represents the difference between the two sides of the inequality and is assumed to be non-negative. For example, the inequalities

are replaced with

It is much easier to perform algebraic manipulation on inequalities in this form. In inequalities where ≥ appears such as the second one, some authors refer to the variable introduced as a surplus variable.

Third, each unrestricted variable is eliminated from the linear program. This can be done in two ways, one is by solving for the variable in one of the equations in which it appears and then eliminating the variable by substitution. The other is to replace the variable with the difference of two restricted variables. For example, if is unrestricted then write

The equation may be used to eliminate from the linear program.

When this process is complete the feasible region will be in the form

It is also useful to assume that the rank of is the number of rows. This results in no loss of generality since otherwise either the system has redundant equations which can be dropped, or the system is inconsistent and the linear program has no solution.[17]

Simplex tableau

[edit]

A linear program in standard form can be represented as a tableau of the form

The first row defines the objective function and the remaining rows specify the constraints. The zero in the first column represents the zero vector of the same dimension as the vector (different authors use different conventions as to the exact layout). If the columns of can be rearranged so that it contains the identity matrix of order (the number of rows in ) then the tableau is said to be in canonical form.[18] The variables corresponding to the columns of the identity matrix are called basic variables while the remaining variables are called nonbasic or free variables. If the values of the nonbasic variables are set to 0, then the values of the basic variables are easily obtained as entries in and this solution is a basic feasible solution. The algebraic interpretation here is that the coefficients of the linear equation represented by each row are either , , or some other number. Each row will have column with value , columns with coefficients , and the remaining columns with some other coefficients (these other variables represent our non-basic variables). By setting the values of the non-basic variables to zero we ensure in each row that the value of the variable represented by a in its column is equal to the value at that row.

Conversely, given a basic feasible solution, the columns corresponding to the nonzero variables can be expanded to a nonsingular matrix. If the corresponding tableau is multiplied by the inverse of this matrix then the result is a tableau in canonical form.[19]

Let

be a tableau in canonical form. Additional row-addition transformations can be applied to remove the coefficients cT
B
 
from the objective function. This process is called pricing out and results in a canonical tableau

where zB is the value of the objective function at the corresponding basic feasible solution. The updated coefficients, also known as relative cost coefficients, are the rates of change of the objective function with respect to the nonbasic variables.[14]

Pivot operations

[edit]

The geometrical operation of moving from a basic feasible solution to an adjacent basic feasible solution is implemented as a pivot operation. First, a nonzero pivot element is selected in a nonbasic column. The row containing this element is multiplied by its reciprocal to change this element to 1, and then multiples of the row are added to the other rows to change the other entries in the column to 0. The result is that, if the pivot element is in a row r, then the column becomes the r-th column of the identity matrix. The variable for this column is now a basic variable, replacing the variable which corresponded to the r-th column of the identity matrix before the operation. In effect, the variable corresponding to the pivot column enters the set of basic variables and is called the entering variable, and the variable being replaced leaves the set of basic variables and is called the leaving variable. The tableau is still in canonical form but with the set of basic variables changed by one element.[13][14]

Algorithm

[edit]

Let a linear program be given by a canonical tableau. The simplex algorithm proceeds by performing successive pivot operations each of which give an improved basic feasible solution; the choice of pivot element at each step is largely determined by the requirement that this pivot improves the solution.

Entering variable selection

[edit]

Since the entering variable will, in general, increase from 0 to a positive number, the value of the objective function will decrease if the derivative of the objective function with respect to this variable is negative. Equivalently, the value of the objective function is increased if the pivot column is selected so that the corresponding entry in the objective row of the tableau is positive.

If there is more than one column so that the entry in the objective row is positive then the choice of which one to add to the set of basic variables is somewhat arbitrary and several entering variable choice rules[20] such as Devex algorithm[21] have been developed.

If all the entries in the objective row are less than or equal to 0 then no choice of entering variable can be made and the solution is in fact optimal. It is easily seen to be optimal since the objective row now corresponds to an equation of the form

By changing the entering variable choice rule so that it selects a column where the entry in the objective row is negative, the algorithm is changed so that it finds the minimum of the objective function rather than the maximum.

Leaving variable selection

[edit]

Once the pivot column has been selected, the choice of pivot row is largely determined by the requirement that the resulting solution be feasible. First, only positive entries in the pivot column are considered since this guarantees that the value of the entering variable will be nonnegative. If there are no positive entries in the pivot column then the entering variable can take any non-negative value with the solution remaining feasible. In this case the objective function is unbounded below and there is no minimum.

Next, the pivot row must be selected so that all the other basic variables remain positive. A calculation shows that this occurs when the resulting value of the entering variable is at a minimum. In other words, if the pivot column is c, then the pivot row r is chosen so that

is the minimum over all r so that arc > 0. This is called the minimum ratio test.[20] If there is more than one row for which the minimum is achieved then a dropping variable choice rule[22] can be used to make the determination.

Example

[edit]

Consider the linear program

Minimize
Subject to

With the addition of slack variables s and t, this is represented by the canonical tableau

where columns 5 and 6 represent the basic variables s and t and the corresponding basic feasible solution is

Columns 2, 3, and 4 can be selected as pivot columns, for this example column 4 is selected. The values of z resulting from the choice of rows 2 and 3 as pivot rows are 10/1 = 10 and 15/3 = 5 respectively. Of these the minimum is 5, so row 3 must be the pivot row. Performing the pivot produces

Now columns 4 and 5 represent the basic variables z and s and the corresponding basic feasible solution is

For the next step, there are no positive entries in the objective row and in fact

so the minimum value of Z is −20.

Finding an initial canonical tableau

[edit]

In general, a linear program will not be given in the canonical form and an equivalent canonical tableau must be found before the simplex algorithm can start. This can be accomplished by the introduction of artificial variables. Columns of the identity matrix are added as column vectors for these variables. If the b value for a constraint equation is negative, the equation is negated before adding the identity matrix columns. This does not change the set of feasible solutions or the optimal solution, and it ensures that the slack variables will constitute an initial feasible solution. The new tableau is in canonical form but it is not equivalent to the original problem. So a new objective function, equal to the sum of the artificial variables, is introduced and the simplex algorithm is applied to find the minimum; the modified linear program is called the Phase I problem.[23]

The simplex algorithm applied to the Phase I problem must terminate with a minimum value for the new objective function since, being the sum of nonnegative variables, its value is bounded below by 0. If the minimum is 0 then the artificial variables can be eliminated from the resulting canonical tableau producing a canonical tableau equivalent to the original problem. The simplex algorithm can then be applied to find the solution; this step is called Phase II. If the minimum is positive then there is no feasible solution for the Phase I problem where the artificial variables are all zero. This implies that the feasible region for the original problem is empty, and so the original problem has no solution.[13][14][24]

Example

[edit]

Consider the linear program

Minimize
Subject to

This is represented by the (non-canonical) tableau

Introduce artificial variables u and v and objective function W = u + v, giving a new tableau

The equation defining the original objective function is retained in anticipation of Phase II.

By construction, u and v are both basic variables since they are part of the initial identity matrix. However, the objective function W currently assumes that u and v are both 0. In order to adjust the objective function to be the correct value where u = 10 and v = 15, add the third and fourth rows to the first row giving

Select column 5 as a pivot column, so the pivot row must be row 4, and the updated tableau is

Now select column 3 as a pivot column, for which row 3 must be the pivot row, to get

The artificial variables are now 0 and they may be dropped giving a canonical tableau equivalent to the original problem:

This is, fortuitously, already optimal and the optimum value for the original linear program is −130/7.

Advanced topics

[edit]

Implementation

[edit]

The tableau form used above to describe the algorithm lends itself to an immediate implementation in which the tableau is maintained as a rectangular (m + 1)-by-(m + n + 1) array. It is straightforward to avoid storing the m explicit columns of the identity matrix that will occur within the tableau by virtue of B being a subset of the columns of [AI]. This implementation is referred to as the "standard simplex algorithm". The storage and computation overhead is such that the standard simplex method is a prohibitively expensive approach to solving large linear programming problems.

In each simplex iteration, the only data required are the first row of the tableau, the (pivotal) column of the tableau corresponding to the entering variable and the right-hand-side. The latter can be updated using the pivotal column and the first row of the tableau can be updated using the (pivotal) row corresponding to the leaving variable. Both the pivotal column and pivotal row may be computed directly using the solutions of linear systems of equations involving the matrix B and a matrix-vector product using A. These observations motivate the "revised simplex algorithm", for which implementations are distinguished by their invertible representation of B.[25]

In large linear-programming problems A is typically a sparse matrix and, when the resulting sparsity of B is exploited when maintaining its invertible representation, the revised simplex algorithm is much more efficient than the standard simplex method. Commercial simplex solvers are based on the revised simplex algorithm.[24][25][26][27][28]

Degeneracy: stalling and cycling

[edit]

If the values of all basic variables are strictly positive, then a pivot must result in an improvement in the objective value. When this is always the case no set of basic variables occurs twice and the simplex algorithm must terminate after a finite number of steps. Basic feasible solutions where at least one of the basic variables is zero are called degenerate and may result in pivots for which there is no improvement in the objective value. In this case there is no actual change in the solution but only a change in the set of basic variables. When several such pivots occur in succession, there is no improvement; in large industrial applications, degeneracy is common and such "stalling" is notable. Worse than stalling is the possibility the same set of basic variables occurs twice, in which case, the deterministic pivoting rules of the simplex algorithm will produce an infinite loop, or "cycle". While degeneracy is the rule in practice and stalling is common, cycling is rare in practice. A discussion of an example of practical cycling occurs in Padberg.[24] Bland's rule prevents cycling and thus guarantees that the simplex algorithm always terminates.[24][29][30] Another pivoting algorithm, the criss-cross algorithm never cycles on linear programs.[31]

History-based pivot rules such as Zadeh's rule and Cunningham's rule also try to circumvent the issue of stalling and cycling by keeping track of how often particular variables are being used and then favor such variables that have been used least often.

Efficiency in the worst case

[edit]

The simplex method is remarkably efficient in practice and was a great improvement over earlier methods such as Fourier–Motzkin elimination. However, in 1972, Klee and Minty[32] gave an example, the Klee–Minty cube, showing that the worst-case complexity of simplex method as formulated by Dantzig is exponential time. Since then, for almost every variation on the method, it has been shown that there is a family of linear programs for which it performs badly. It is an open question if there is a variation with polynomial time, although sub-exponential pivot rules are known.[33]

In 2014, it was proved[citation needed] that a particular variant of the simplex method is NP-mighty, i.e., it can be used to solve, with polynomial overhead, any problem in NP implicitly during the algorithm's execution. Moreover, deciding whether a given variable ever enters the basis during the algorithm's execution on a given input, and determining the number of iterations needed for solving a given problem, are both NP-hard problems.[34] At about the same time it was shown that there exists an artificial pivot rule for which computing its output is PSPACE-complete.[35] In 2015, this was strengthened to show that computing the output of Dantzig's pivot rule is PSPACE-complete.[36]

Efficiency in practice

[edit]

Analyzing and quantifying the observation that the simplex algorithm is efficient in practice despite its exponential worst-case complexity has led to the development of other measures of complexity. The simplex algorithm has polynomial-time average-case complexity under various probability distributions, with the precise average-case performance of the simplex algorithm depending on the choice of a probability distribution for the random matrices.[37][38] Another approach to studying "typical phenomena" uses Baire category theory from general topology, and to show that (topologically) "most" matrices can be solved by the simplex algorithm in a polynomial number of steps.[citation needed]

Another method to analyze the performance of the simplex algorithm studies the behavior of worst-case scenarios under small perturbation – are worst-case scenarios stable under a small change (in the sense of structural stability), or do they become tractable? This area of research, called smoothed analysis, was introduced specifically to study the simplex method. Indeed, the running time of the simplex method on input with noise is polynomial in the number of variables and the magnitude of the perturbations.[39][40]

Other algorithms

[edit]

Other algorithms for solving linear-programming problems are described in the linear-programming article. Another basis-exchange pivoting algorithm is the criss-cross algorithm.[41][42] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan's ellipsoidal algorithm, Karmarkar's projective algorithm, and path-following algorithms.[15] The Big-M method is an alternative strategy for solving a linear program, using a single-phase simplex.

Linear-fractional programming

[edit]

Linear–fractional programming (LFP) is a generalization of linear programming (LP). In LP the objective function is a linear function, while the objective function of a linear–fractional program is a ratio of two linear functions. In other words, a linear program is a fractional–linear program in which the denominator is the constant function having the value one everywhere. A linear–fractional program can be solved by a variant of the simplex algorithm[43][44][45][46] or by the criss-cross algorithm.[47]

See also

[edit]

Notes

[edit]
  1. ^ Murty, Katta G. (2000). Linear programming. John Wiley & Sons.
  2. ^ Murty (1983, Comment 2.2)
  3. ^ Murty (1983, Note 3.9)
  4. ^ Stone, Richard E.; Tovey, Craig A. (1991). "The simplex and projective scaling algorithms as iteratively reweighted least squares methods". SIAM Review. 33 (2): 220–237. doi:10.1137/1033049. JSTOR 2031142. MR 1124362.
  5. ^ Stone, Richard E.; Tovey, Craig A. (1991). "Erratum: The simplex and projective scaling algorithms as iteratively reweighted least squares methods". SIAM Review. 33 (3): 461. doi:10.1137/1033100. JSTOR 2031443. MR 1124362.
  6. ^ Strang, Gilbert (1 June 1987). "Karmarkar's algorithm and its place in applied mathematics". The Mathematical Intelligencer. 9 (2): 4–10. doi:10.1007/BF03025891. ISSN 0343-6993. MR 0883185. S2CID 123541868.
  7. ^ Dantzig, George B. (April 1982). "Reminiscences about the origins of linear programming" (PDF). Operations Research Letters. 1 (2): 43–48. doi:10.1016/0167-6377(82)90043-8. Archived from the original on May 20, 2015.
  8. ^ Albers and Reid (1986). "An Interview with George B. Dantzig: The Father of Linear Programming". College Mathematics Journal. 17 (4): 292–314. doi:10.1080/07468342.1986.11972971.
  9. ^ Dantzig, George (May 1987). "Origins of the simplex method" (PDF). In Nash, Stephen G. (ed.). A History of Scientific Computing. Association for Computing Machinery. pp. 141–151. doi:10.1145/87252.88081. ISBN 978-0-201-50814-7. Archived (PDF) from the original on May 29, 2015.
  10. ^ Murty (1983, Theorem 3.3)
  11. ^ Murty (1983, p. 143, Section 3.13)
  12. ^ a b Murty (1983, p. 137, Section 3.8)
  13. ^ a b c George B. Dantzig and Mukund N. Thapa. 1997. Linear programming 1: Introduction. Springer-Verlag.
  14. ^ a b c d Evar D. Nering and Albert W. Tucker, 1993, Linear Programs and Related Problems, Academic Press. (elementary)
  15. ^ a b Robert J. Vanderbei, Linear Programming: Foundations and Extensions, 3rd ed., International Series in Operations Research & Management Science, Vol. 114, Springer Verlag, 2008. ISBN 978-0-387-74387-5.
  16. ^ Murty (1983, Section 2.2)
  17. ^ Murty (1983, p. 173)
  18. ^ Murty (1983, section 2.3.2)
  19. ^ Murty (1983, section 3.12)
  20. ^ a b Murty (1983, p. 66)
  21. ^ Harris, Paula MJ. "Pivot selection methods of the Devex LP code." Mathematical programming 5.1 (1973): 1–28
  22. ^ Murty (1983, p. 67)
  23. ^ Murty (1983, p. 60)
  24. ^ a b c d Padberg, M. (1999). Linear Optimization and Extensions (Second ed.). Springer-Verlag. ISBN 3-540-65833-5.
  25. ^ a b Dantzig, George B.; Thapa, Mukund N. (2003). Linear Programming 2: Theory and Extensions. Springer-Verlag.
  26. ^ Alevras, Dmitris; Padberg, Manfred W. (2001). Linear Optimization and Extensions: Problems and Solutions. Universitext. Springer-Verlag. ISBN 3-540-41744-3. (Problems from Padberg with solutions.)
  27. ^ Maros, István; Mitra, Gautam (1996). "Simplex algorithms". In J. E. Beasley (ed.). Advances in linear and integer programming. Oxford Science. pp. 1–46. MR 1438309.
  28. ^ Maros, István (2003). Computational techniques of the simplex method. International Series in Operations Research & Management Science. Vol. 61. Boston, MA: Kluwer Academic Publishers. pp. xx+325. ISBN 978-1-4020-7332-8. MR 1960274.
  29. ^ Bland, Robert G. (May 1977). "New finite pivoting rules for the simplex method". Mathematics of Operations Research. 2 (2): 103–107. doi:10.1287/moor.2.2.103. JSTOR 3689647. MR 0459599. S2CID 18493293.
  30. ^ Murty (1983, p. 79)
  31. ^ There are abstract optimization problems, called oriented matroid programs, on which Bland's rule cycles (incorrectly) while the criss-cross algorithm terminates correctly.
  32. ^ Klee, Victor; Minty, George J. (1972). "How good is the simplex algorithm?". In Shisha, Oved (ed.). Inequalities III (Proceedings of the Third Symposium on Inequalities held at the University of California, Los Angeles, Calif., September 1–9, 1969, dedicated to the memory of Theodore S. Motzkin). New York-London: Academic Press. pp. 159–175. MR 0332165.
  33. ^ Hansen, Thomas; Zwick, Uri (2015), "An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm", Proceedings of the forty-seventh annual ACM symposium on Theory of Computing, pp. 209–218, CiteSeerX 10.1.1.697.2526, doi:10.1145/2746539.2746557, ISBN 9781450335362, S2CID 1980659
  34. ^ Disser, Yann; Skutella, Martin (2018-11-01). "The Simplex Algorithm Is NP-Mighty". ACM Trans. Algorithms. 15 (1): 5:1–5:19. arXiv:1311.5935. doi:10.1145/3280847. ISSN 1549-6325. S2CID 54445546.
  35. ^ Adler, Ilan; Christos, Papadimitriou; Rubinstein, Aviad (2014), "On Simplex Pivoting Rules and Complexity Theory", Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 17, pp. 13–24, arXiv:1404.3320, doi:10.1007/978-3-319-07557-0_2, ISBN 978-3-319-07556-3, S2CID 891022
  36. ^ Fearnly, John; Savani, Rahul (2015), "The Complexity of the Simplex Method", Proceedings of the forty-seventh annual ACM symposium on Theory of Computing, pp. 201–208, arXiv:1404.0605, doi:10.1145/2746539.2746558, ISBN 9781450335362, S2CID 2116116
  37. ^ Alexander Schrijver, Theory of Linear and Integer Programming. John Wiley & sons, 1998, ISBN 0-471-98232-6 (mathematical)
  38. ^ The simplex algorithm takes on average D steps for a cube. Borgwardt (1987): Borgwardt, Karl-Heinz (1987). The simplex method: A probabilistic analysis. Algorithms and Combinatorics (Study and Research Texts). Vol. 1. Berlin: Springer-Verlag. pp. xii+268. ISBN 978-3-540-17096-9. MR 0868467.
  39. ^ Spielman, Daniel; Teng, Shang-Hua (2001). "Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time". Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 296–305. arXiv:cs/0111050. doi:10.1145/380752.380813. ISBN 978-1-58113-349-3. S2CID 1471.
  40. ^ Dadush, Daniel; Huiberts, Sophie (2020-01-01). "A Friendly Smoothed Analysis of the Simplex Method". SIAM Journal on Computing. 49 (5): STOC18–449. arXiv:1711.05667. doi:10.1137/18M1197205. ISSN 0097-5397. S2CID 226351624.
  41. ^ Terlaky, Tamás; Zhang, Shu Zhong (1993). "Pivot rules for linear programming: A Survey on recent theoretical developments". Annals of Operations Research. 46–47 (1): 203–233. CiteSeerX 10.1.1.36.7658. doi:10.1007/BF02096264. ISSN 0254-5330. MR 1260019. S2CID 6058077.
  42. ^ Fukuda, Komei; Terlaky, Tamás (1997). Thomas M. Liebling; Dominique de Werra (eds.). "Criss-cross methods: A fresh view on pivot algorithms". Mathematical Programming, Series B. 79 (1–3). Amsterdam: North-Holland Publishing: 369–395. doi:10.1007/BF02614325. MR 1464775. S2CID 2794181.
  43. ^ Murty (1983, Chapter 3.20 (pp. 160–164) and pp. 168 and 179)
  44. ^ Chapter five: Craven, B. D. (1988). Fractional programming. Sigma Series in Applied Mathematics. Vol. 4. Berlin: Heldermann Verlag. p. 145. ISBN 978-3-88538-404-5. MR 0949209.
  45. ^ Kruk, Serge; Wolkowicz, Henry (1999). "Pseudolinear programming". SIAM Review. 41 (4): 795–805. Bibcode:1999SIAMR..41..795K. CiteSeerX 10.1.1.53.7355. doi:10.1137/S0036144598335259. JSTOR 2653207. MR 1723002.
  46. ^ Mathis, Frank H.; Mathis, Lenora Jane (1995). "A nonlinear programming algorithm for hospital management". SIAM Review. 37 (2): 230–234. doi:10.1137/1037046. JSTOR 2132826. MR 1343214. S2CID 120626738.
  47. ^ Illés, Tibor; Szirmai, Ákos; Terlaky, Tamás (1999). "The finite criss-cross method for hyperbolic programming". European Journal of Operational Research. 114 (1): 198–214. CiteSeerX 10.1.1.36.7090. doi:10.1016/S0377-2217(98)00049-6. ISSN 0377-2217.

References

[edit]

Further reading

[edit]

These introductions are written for students of computer science and operations research:

[edit]